COMPRESSED TRAINING ADAPTIVE EQUALIZATION
Baki B. Yılmaz, Alper T. Erdogan
Koc University, Istanbul, Turkey

What is Compressed Training Adaptive Equalization?
- An adaptive equalization framework aiming to reduce the number of training symbols in a communication packet. The equalizer coefficients are trained by exploiting:
 - Training symbols,
 - Magnitude-boundedness property of digital communication constellations.

Highlights of the Framework
- Direct link with Compressed Sensing,
- Reduce Training Length,
- Desirable:
 - Minimum Training Length & log(Channel Spread)
- Algorithms Based on Convex Settings,
- Do NOT Make Sparse Channel Assumption.

Equalization Setup
- We assume the standard Fractionally-Spaced Equalization Setup.

The Proposed Framework
Noiseless/High SNR Case:
- The proposed optimization setting:

 \[\text{minimize} \quad \|a\|_\infty \quad \text{subject to} \quad y_F w = s_F. \]

Connection to Compressed Sensing
- For the noiseless scenario, \(a \) can be written as:
 \[a = g_0 a_0 + g_1 a_1 + \cdots + g_L a_{L-1} \]
- For sufficiently long data packet and BFSK constellation,
 \[\|a\|_\infty \leq 1. \]
- The corresponding dual optimization setting:
 \[\text{minimize} \quad \|\beta\|_1 \quad \text{subject to} \quad \beta = y_F^T. \]

Connection to Compressed Sensing
- We observe Setting I is equivalent to Sparse Reconstruction Problem if we consider:
 - \(y_F \) as the observation vector,
 - \(S \) as the measurement matrix and,
 - \(g \) as the one-sparse vector to be reconstructed.

Analysis of the Proposed Approach
- The mutual coherence of the matrix \(S \in \mathbb{R}^{n \times L} \) is defined as \(\mu(S) = \max_{i \neq j} \frac{|S_{ij}|}{\sqrt{\|S_i\|_2 \cdot \|S_j\|_2}} \)
- Theorem 2: Let \(S \in \mathbb{R}^{n \times L} \) be full rank with \(L \geq L_0 \).
 If the system of linear equations \(Sg = y \) has a solution \(g \), which obeys
 \[\|g\|_0 < 0.5 \left(1 + \mu(S)^{-1} \right), \]
 then it is the unique solution for the optimization problem in Setting I.

CONCLUSION
- We introduced convex optimization based Adaptive Equalization Framework that reduces training data to \(O(\log(\text{Channel-Spread})) \) as opposed to \(O(\text{Channel-Spread}) \).
- A duality based link between the proposed approach and compressed sensing is established.

REFERENCES

Noisy Case Communication Example
- SNR is chosen as 25dB,
- Compared with least squares and the blind algorithm in [3]:

- Channel Length=15 and Equalizer Length=20,
- Success probability is defined as \(|g - e_{1:2}^\top| \leq 10^{-5}, \)
- Comparison with the algorithm in [4](CMA+LS),
- Empirical probability vs. the bounds and Mean Square Error Performance.

Noisy Case Communication Example

Data Training Data
- The optimization setting factoring existence of noise:
 \[\text{minimize} \quad \|y_F w - y_F^T\|_2 \quad \text{subject to} \quad \|a\|_\infty \leq \gamma \]

Setting I: \(\ell_1 \)-LASSO
- \(\gamma \) represents the knowledge about the symbol boundedness.
- Alternative convex optimization setting for the noisy case:
 \[\text{minimize} \quad \|y_F w - y_F^T\|_2 + \lambda \|a\|_\infty \]

Perfect Equalization Condition: \(g_0 = \delta_{L-1}. \)

\(\lambda \) is the regularization parameter.

Connection to Compressed Sensing
- We observe Setting I is equivalent to Sparse Reconstruction Problem if we consider:
 - \(y_F \) as the observation vector,
 - \(S \) as the measurement matrix and,
 - \(g \) as the one-sparse vector to be reconstructed.

Analysis of the Proposed Approach
- The mutual coherence of the matrix \(S \in \mathbb{R}^{n \times L_0} \) is defined as \(\mu(S) = \max_{i \neq j} \frac{|S_{ij}|}{\sqrt{\|S_i\|_2 \cdot \|S_j\|_2}} \)
- Theorem 2: Let \(S \in \mathbb{R}^{n \times L_0} \) be full rank with \(L_0 < L_0 \).
 If the system of linear equations \(Sg = y \) has a solution \(g \), which obeys
 \[\|g\|_0 < 0.5 \left(1 + \mu(S)^{-1} \right), \]
 then it is the unique solution for the optimization problem in Setting I.

CONCLUSION
- We introduced convex optimization based Adaptive Equalization Framework that reduces training data to \(O(\log(\text{Channel-Spread})) \) as opposed to \(O(\text{Channel-Spread}) \).
- A duality based link between the proposed approach and compressed sensing is established.

REFERENCES

This poster was prepared with Brian Wolven’s Poster IDGx
master v2.1.