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Abstract—With the increasing ubiquity and power of mobile
devices, as well as the prevalence of social systems, more and more
activities in our daily life are being recorded, tracked, and shared,
creating the notion of “social media”. Such abundant and still
growing real life data, known as “big data”, provide a tremendous
research opportunity in many fields. To analyze, learn and
understand such user-generated data, machine/social learning has
been an important tool and various machine learning algorithms
have been developed. However, since the user-generated data are
the outcome of users’ decisions, actions and their socio-economic
interactions, which are highly dynamic, without considering
users’ local behaviors and interests, existing learning approaches
tend to focus on optimizing a global objective function at the
macroeconomic level, while totally ignore users’ local interactions
at the microeconomic level. As such there is a growing need in
bridging machine/social learning with strategic decision making,
which are two traditionally distinct research disciplines, to be able
to jointly consider both global phenomenon and local effects to
understand/model/analyze better the newly arising issues in the
emerging social media with user-generated data. In this paper, we
present the emerging notion of “decision learning”, i.e. learning
with strategic decision making, that involves users’ behaviors
and interactions by combining learning with strategic decision
making. We will discuss some examples from social media with
real data to show how decision learning can be used to better
analyze users’ optimal decision from a user’s perspective as well
as design a mechanism from the system designer’s perspective to
achieve a desirable outcome.

Index Terms—Data science, big data, machine learning, game
theory, social media, behavior analysis, mechanism design, deci-
sion learning.

I. INTRODUCTION

With the rapid development of communication and infor-
mation technologies, the last decade has witnessed a pro-
liferation of emerging social systems that help to promote
the connectivity of people to an unprecedentedly high level.
Examples of these emerging systems can be found in a wide
range of domains from online social networks like Facebook or
Twitter; to crowdsourcing sites like Amazon Mechanical Turk
or Topcoder where people solve various tasks by assigning
them to a large pool of online workers; to online question and
answering (Q&A) sites like Quora or Stack Overflow where
people ask all kinds of questions; and all the way to new
paradigms of power/energy systems like smart grid. Fig. 1
shows a few examples of such growing social systems.

Together with the increasing ubiquity and power of mobile
devices, the prevalence of social systems, and the rise of global
clouds, more and more activities in our daily life are being
recorded, tracked, and shared, creating the notion of “social

Fig. 1. Examples of social systems.

media”. Such abundant and still growing real life data, known
as “big data”, provide a tremendous research opportunity in
many fields, for example, behavior and sentiment analysis, epi-
demics and diseases propagation modeling, grid and network
traffic management, financial market trends tracking, just to
name a few.

To analyze, learn and understand such user-generated data,
machine/social learning has been an important tool [1], [2].
Learning aims to use reasoning to find new, relevant infor-
mation given some background knowledge through represen-
tation, evaluation, and optimization. However, there are some
limitations and constraints. First the generalization assumption
that the training set is statistically consistent with testing set
is often not true because users behavior differently at different
time under different setting. Second, the single objective
function cannot cover users’ different interests since users
have different interests and thus different objective function.
Besides, users are rational and thus naturally selfish - they
want to optimize their own objective functions [3], [4]. Third,
the data is the outcome of users’ interaction, while learning
algorithms cannot naturally involve users’ individual local
interest. Therefore, the knowledge contained in the data is
difficult to be fully exploited from such a macroscopic view.

Existing learning approaches tend to focus on optimizing a
global objective function at the macroeconomic level, while
totally ignore users’ local interactions/decisions at the microe-
conomic level. Indeed, user-generated data is the outcome of
users’ decisions, actions and their social-economic interac-
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Fig. 2. Bridging learning with strategic decision making.

tions, which are highly dynamic, and thus the interactions of
users and their decision making process should be taken into
consideration. As such there is a growing need in bridging
learning with strategic decision making to be more effective in
mining, reasoning and extracting knowledge and information
from “big data”.

Yet, there is a missing link. Traditionally, both learning
and decision making are two distinct research disciplines.
Success in bridging them allows us to jointly consider both
the global phenomenon and local effects to better under-
stand/model/analyze user-generated data from the emerging
social media. Besides, learning is for making optimal deci-
sions. In essence, learning and decision making are destined
to couple due to the network externality, i.e., the influence
of other users’ behaviors on one user’s reward [5]. In this
paper, we describe the emerging research field of “decision
learning”, i.e., learning with strategic decision making, that
involves users’ behaviors and interactions by combining learn-
ing with strategic decision making, as illustrated in Fig. 2. In
decision learning, there are two major elements of data-driven
issues: one is the modeling, analysis, and understanding, of
user behaviors and their interactions, and the other is the
design of mechanism to achieve the desired outcomes. The
former considers the issues from user perspectives, while the
latter motivates from system point of views.

Different from traditional networks and systems where users
are mandated by fixed and predetermined rules, user interac-
tions in social media/networks are generally self-enforcing [6],
[7]. On one hand, users in these systems have great flexibilities
in their actions and have the ability to observe, learn, and make
intelligent decisions. On the other hand, due to the selfish
nature, users will act to pursuit their own interests, which
oftentimes conflict with other users’ objectives and the system
designer’s goal. These new features call for new theoretical
and practical solutions to the designs of social media/networks.
How can system designers design their systems to resolve
the conflicting interests among users? And given various and
conflicting interests among users, how to achieve a desired
system-wide performance?

The above questions motivate the study of user behaviors
and incentive mechanisms in data science. Incentive mecha-
nisms refer to schemes that aim to steer user behaviors through

the allocation of various forms of rewards such as monetary
rewards, virtual points and reputation status. Plenty of empiri-
cal evidences can be found in the social psychology literature
that demonstrate user behaviors in social media/networks are
indeed highly influenced by these rewards [9]–[14]. Although
we can learn from the social psychology literature on what
factors influence user behaviors and thus can be used as
rewards, how to allocate these rewards to achieve desired
user behaviors is still not well understood, which leads to
ad hoc or poor designs of incentive mechanisms in many
social media/networks in practice. How can we fundamentally
understand user behaviors under the presence of rewards in so-
cial media/networks? Moreover, based on such understandings,
how should a system developer design incentive mechanisms
to achieve various objectives in a systematic way?

The focus of this paper is to open a discussion of an emerg-
ing field, termed as decision learning, that jointly combines
learning with decision making towards a better fundamental
understanding of user behaviors embedded under the tsunami
of user-generated “big data”. In this paper, we present three
game-theoretic frameworks to formally model user participa-
tion and interactions under various scenarios in social medi-
a/networks: decision learning with evolutionary user behavior,
decision learning with sequential user behavior, and decision
learning with mechanism design. On the evolutionary behav-
ior, how information diffuses over online social networks using
graphical evolutionary game is presented; on the sequential
behavior, how customers learn and choose the “best” deals
using Chinese restaurant game framework is considered; and
on the mechanism design, how to design mechanism to collect
high quality data with low cost from crowdsourcing is illus-
trated. Using these frameworks, we can theoretically analyze
and predict user behaviors through equilibrium analysis. And,
based on the analysis, one can optimize in a systematic way
the design of incentive mechanisms for social media/networks
to achieve a wide range of system objectives and analyze their
performances accordingly.

The paper is organized as follows. In Section II, user
behavior modeling and analysis will be considered. First a
graphical evolutionary game framework is presented to tack-
le the repetitive/evolutionary user behavior, followed by the
discussion of the Chinese restaurant game framework for the
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Fig. 3. Memetracker phrase cluster during 2008 US presidential election: spreading of comments and phrasing by candidates [8].

understanding of sequential user behavior. In Section III, the
design of incentive mechanisms to achieve desirable goals
is illustrated with an example on designing mechanism for
obtaining high-quality data and for enforcing “good” behavior
in crowdsouring. In Section IV, related works on combining
learning with decision learning are discussed. Finally, conclu-
sions are drawn and final thoughts are given in Section V.

II. USER BEHAVIOR MODELING AND ANALYSIS IN
DECISION LEARNING

In this section, we will address decision learning from user
point of view. Both the evolutionary and sequential user behav-
iors are commonly exhibited in social systems. How learning
with strategic decision making may arise from both settings
will be illustrated first with information diffusion over online
social networks using graphical evolutionary game framework
from Twitter and Memetracker data, and then with optimal
restaurant strategy using Chinese restaurant game framework
from both Groupon deals and Yelp rating, respectively.

A. Evolutionary User Behavior: Graphical Evolutionary
Game Framework

One typical user behavior in social systems is the repetitive
and evolutionary decision making. A good example is that
users repetitively decide whether to post/forward information
or not on online social networks. Fig. 3 shows the top 50
threads in the news cycle with highest volume for the period
Aug. 1 - Oct. 31, 2008, where each thread consists of all
new articles and blog posts containing a textual variant of a
particular quoted phrases. The five large peaks between late
August and late September corresponding to the Democratic
and Republican National Conventions illustrate the spreading
of comments and phrasing by candidates. Notice that the
information forwarding is often not unconditional. One has
to make a decision on whether or not to do so based on
many factors, such as if the information is exciting or if

his/her friends are interested on it, etc. Other examples include
repetitive online purchasing and review posting.

We find that in essence the repetitive/evolutionary decision
making process on social systems follows similarly the evolu-
tion process in natural ecological systems [15]. It is a process
that evolves from one state at a particular instance to another
when information is shared and decision is made. Thus, the
evolutionary game is an ideal tool to model and analyze the
social system users’ repetitive and evolutionary behavior. Evo-
lutionary game theory is an application of the mathematical
theory of games to the interaction dependent strategy evolution
in populations [15]. Arising from the realization that frequency
dependent fitness introduces a strategic aspect to evolution,
evolutionary game theory becomes an essential component
of a mathematical and computational approach to biological
contexts, such as genes, viruses, cells, and humans. Recently,
evolutionary game theory has also become of increased in-
terest to economists, sociologists, anthropologists, and social
scientists. Here, we show how the evolutionary game theory is
deployed to study users’ repetitive and evolutionary behavior
in social systems.

In the setting of our consideration, the social system user
topology can be treated as a graph structure and the user with
new decision can be regarded as the mutant. By considering
the decision making process as the mutant spreading process
(to forward or not to forward when an event (mutant) takes
place), the graphical evolutionary game provides us with
an analytical means to find the evolutionary dynamics and
equilibrium of user behavior.

1) Graphical Evolutionary Game Framework: In evolution-
ary game theory, the utility of a player is referred to as “fit-
ness” [16]. Specifically, the fitness Φ is a linear combination
of the baseline fitness (B) representing the player’s inherent
property and the player’s payoff (U ) which is determined by
the predefined payoff matrix and the player’s interactions with
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Fig. 4. Imitation strategy updating rule.

others as follows

Φ = (1− α)B + αU, (1)

where the combining weight α is called as the selection
intensity. One can interpret that one’s fitness is not only
determined by one’s own strength, but also from one’s en-
vironment affecting with a selection intensity α. The case
that α → 0 represents the limit of weak selection [17], while
α → 1 denotes strong selection. The selection intensity can
also be time varying, e.g., α = βe−ϵt, which means that the
contribution of game interaction decreases along with time.

With the fitness function, the evolutionary game theory
studies and characterizes how a group of players converges to a
stable equilibrium after a period of strategic interactions. Such
a final equilibrium state is called as the Evolutionarily Stable
State (ESS), which is “a strategy such that, if all members of
the population adopt it, then no mutant strategy could invade
the population under the influence of natural selection” [15].
In other words, even if a small fraction of players may not
be rational and take out-of-equilibrium strategies, ESS is still
a locally stable state. How to find the ESSs is an important
issue in evolutionary game theory. One common approach is
to find the stable points of the system state dynamic, which is
known as replicator dynamics. The corresponding underlying
physical meaning is that: if adopting a certain strategy can
lead to a higher fitness than the average level, the proportion
of population adopting this strategy will increase and the
increasing rate is proportional to the difference between the
average fitness with this strategy and the average fitness of
the whole population. Note that when the total population is
sufficiently large and homogeneous, the proportion of players

Fig. 5. A Facebook subnetwork.

adopting a certain strategy is equivalent to the probability of
one individual player adopting such a strategy, i.e., the strategy
distribution over the whole population can be interpreted as
each player’s mixed strategy and the replicator dynamics can
be interpreted as each player’s mixed strategy update.

Graphical evolutionary game theory is to study the strategies
evolution in such a structured population [18]. In the graphical
evolutionary game theory, in addition to the entities of players,
strategy and fitness matrix, each game model is associated
with a graph structure, where the vertexes represent players
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Graphical EGT Social Network

Graph structure Social network topology

Players Users in the social network

Strategy

Sf : forward the information

Sn: not forward the information

Fitness Utility from forwarding or not

ESS Stable information diffusion state

Fig. 6. Information diffusion as a graphical evolutionary game.

and the edges determine which player to interact with. Since
the players only have limited connections with others, each
player’s fitness is locally determined from interactions with
all adjacent players.

The commonly used strategy updating rules [19] are origi-
nated from the evolutionary biology field and used to model
the resident/mutant evolution process. Fig. 4 illustrates the
detailed evolution procedures of the imitation (IM) strategy
update rule. In the first step, a user is randomly chosen from
the population for imitation. Then, the fitness of the chosen
user and all corresponding neighbors is computed. Finally,
the user will, in probability, either be imitated by one of
the neighbors or remain with his/her current strategy, with
the probability being proportional to fitness. There are also
other rules such as birth-death (BD) strategy update rule and
death-birth (DB) strategy update rule, but through theoretical
analysis [20], we find that these rules are equivalent when the
network degree is sufficiently large.

2) Information Diffusion Formulation and Analysis: A so-
cial network is usually illustrated by a graph, e.g., a Facebook
sub-network is shown in Fig. 5, where each node represents
a user and the edge represents the relationship between users.
When some new information is originated from one user, the
information may be propagated over the network depending
on other users’ actions: to forward the information or not. For
each user, whether to forward the information is determined
by several factors, including the user’s own interest on this
information and his/her neighbor’s actions in the sense that
if all his/her neighbors forward the information, the user may
also forward the information with a relatively high probability.
In such a case, the users’ actions are coupled with each
other through their social interactions. This is very similar
to the player’s strategy update in the graphical evolutionary
game, where players’ strategies are also influenced with each
other through the graph structure. In graphical evolutionary
game, a user’s strategy can influence one of his/her neighbors
when the fitness of adopting this strategy is high. Similarly,
in the information diffusion process, when forwarding the

information can bring a user more utility, the user’s neighbors
may also be influenced to forward the information in the near
future. Therefore, the information diffusion process can be
well modeled by the graphical evolutionary game as illustrated
in Fig. 6.

There are two possible actions for each user, i.e., to forward
(Sf ) or not forward (Sn), and the corresponding users’ payoff
matrix can be written as(

uff ufn

ufn unn

)
(2)

where a symmetric payoff structure is considered, i.e., when
a user with strategy Sf meets a user with strategy Sn, each
of them receives the same payoff ufn. Note that the payoff
matrix is related to the fitness in the graphical evolutionary
game according to (1). The physical meaning of the payoff
can be either the popularity of a user in a social network or the
hit rate of a website. These three parameters will be “learned”
from the data and then used for “decision making”. Under
different application scenarios, the values of the payoff matrix
may be different. For example, if the information is related to
recent hot topics and forwarding of the information can attract
more attentions from other users or website, the payoff matrix
should have the following characteristic: uff ≥ ufn ≥ unn.
According to (1), the fitness of forwarding is larger and thus
the probability of forwarding will be higher. On the other hand,
if the information is about useless advertisements, the payoff
matrix would exhibit unn ≥ ufn ≥ uff , i.e., the fitness of
not forwarding is higher and thus users tend not to forward
information. Furthermore, if the information is supposed to
be shared only within a circle, i.e., a small group with same
interest, the payoff matrix could exhibit ufn ≥ uff ≥ unn.

Since the player’s payoff is determined by both of its own
strategy and the opponent’s strategy, in order to characterize
the global population dynamics, we need to first derive the lo-
cal influence dynamics, as well as the corresponding influence
equilibria. We find in [20] that the local network states, i.e.,
the neighbors’ strategy distribution given a player’s strategy,
evolve with a rate of order 1, while the global network state,
i.e., the strategy distribution of the whole population, evolves
with a rate at the order of the selection intensity α, which is
much smaller than 1 due to the weak selection [17]. In such
a case, the local network states will converge to equilibria
in a much faster rate than the global network state. This
is because the dynamics of local network states are only in
terms of a local area, which contains only the neighbors.
In such a small scale, the local dynamics can change and
converge quite fast. On the other hand, the dynamics of global
network state are associated with all users, i.e., the whole
networks, the dynamics would be much slower. Therefore, the
global network state can be regarded as constant during the
convergence of influence dynamics. By doing so, the equilibria
of the local influence dynamics can be obtained, which are
found to be linear functions of the global network state.

With the equilibria of the local influence dynamics, the glob-
al population dynamics can be derived through analyzing the
strategy updating rules specified in the graphical evolutionary
game [19]. It is found that the global population dynamics
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Fig. 7. Experimental results of the evolutionary population dynamics.

2  8  we're not commenting on that story i'm afraid   2131865

     3  3  we're not commenting on that    489007

        2008-08-18 14:23:05  1  M  http://business.theage.com.au/business/bb-chief-set-to-walk-plank-20080818-3xp7.html

        2008-11-26 01:27:13  1  B  http://sfweekly.com/2008-11-26/news/buy-line

        2008-11-27 18:55:30  1  B  http://aconstantineblacklist.blogspot.com/2008/11/re-researcher-matt-janovic.html

     5  2  we're not commenting on that story      2131864

        2008-12-08 14:50:18  3  B  http://videogaming247.com/2008/12/08/home-in-10-days-were-not-commenting-on-that-story-says-scee

        2008-12-08 19:35:31  2  B  http://jplaystation.com/2008/12/08/home-in-10-days-were-not-commenting-on-that-story-says-scee

Fig. 8. An example of Memetracker prase cluster dataset [8].

can be represented as a two-parameter third order polynomial
function of the global network state [20]

ṗf (t) =
α(k̄ − 1)(k2 − 2k̄)

(k2 − k̄)2
pf (t) [1− pf (t)] [apf (t) + b] ,

(3)
where pf (t) is the proportion of population forwarding the
information and ṗf (t) is the corresponding dynamics, k̄ =
E[k] is the average degree of the network, k2 = E[k2] is the
second moment of the degree of the network, a and b are two
parameters determined by the payoff matrix shown in (2).

From (3), we can see that given the characteristic of the

network, i.e., the average degree k̄ and the second moment
of the degree k2, the evolution dynamics of the information
diffusion can be modeled by a simple two-parameter third
order polynomial function where the two parameters a and
b are determined by the payoff in the payoff matrix, i.e., uff ,
ufn and unn. Therefore, by learning the payoff from the data,
we are able characterize the evolution dynamics of information
diffusion using the evolutionary game-theoretic framework.

By evaluating the global population dynamics at the steady
state, the global population equilibria can be found [21], which
is 0 (no user shares the information to the neighbors), 1 (all
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Fig. 9. Experimental results of the evolutionarily stable strategy.

users share the information to their neighbors), or only a
portion of users share the information to their neighbors where
the amount of such users is purely determined by the payoff
matrices as follow

p∗f =


0, if unn > ufn > uff ;
1, if uff > ufn > unn;
(k2/k̄−2)(ufn−unn)+(uff−unn)

(k2/k̄−2)(2ufn−uff−unn)
, else.

(4)
From (4), we can see that neither user forwarding the

information can gain the most payoff while both forwarding
gains the least payoff, p∗f = 0. This is corresponding to the
scenario where the released information is useless or negative
advertisement, forwarding which can only incur unnecessary
cost. On the contrary, when both users forwarding the in-
formation can gain the most payoff while not forwarding
gains the least payoff, p∗f = 1. This is corresponding to the
scenario where the released information is an extremely hot
topic, forwarding which can attract more attentions. For other
cases, p∗f lies between 0 and 1. For this third ESS, some
approximations can be made as follows:

p∗f =
(k2/k̄ − 2)(ufn − unn) + (uff − unn)

(k2/k̄ − 2)(2ufn − uff − unn)
,

.
=

1

1 +
ufn−uff

ufn−unn

, (5)

where the last approximation is due to k2/k̄ ≥ k̄ and the
assumption that the average network degree k̄ ≫ 2 in real
social networks. We can see that when average network degree
k̄ is sufficiently large, the information diffusion result is
independent of the network scale, i.e., there is a scale-free
phenomenon for the information diffusion equilibrium.

3) Experiments with Real-World Datasets: The real-world
datasets are used to validate the proposed model. We first
use the Twitter hashtag dataset to validate the evolutionary
population dynamics [20]. Specifically, we learn the payoff
matrix in (2) by fitting the real temporal dynamics with the
evolution dynamics in (3), and generate the corresponding
evolution dynamics based on the estimated payoff matrix. The

Twitter hashtag dataset contains the number of mention times
per hour of 1000 Twitter hashtags with corresponding time
series, which are the 1000 hashtags with highest total mention
times among 6 million hashtags from June to December 2009
[22]. We compare our results with one of the most related
existing works using data mining method [8]. Fig. 7 shows the
comparison results, where the vertical axis is the dynamics and
the mention times of different hastags per hour in the Twitter
dataset are normalized within interval [0, 1] and denoted by
solid gray square. From the figure, we can see that the game-
theoretic model can fit very well the real-world information
diffusion dynamics, better than the data mining method in [8]
since the users’ interactions and decision making behaviors
are taken into account.

We then use the “MemeTracker” dataset to validate the ESS
[21]. The dataset contains more than 172 million news articles
and blog posts from 1 million online sources [8]. When a site
publishes a new post, it will put hyperlinks to related posts in
some other sites published earlier as its sources. And later, the
site will also be cited by other newer posts as well. An example
is shown in Fig. 8. In such a case, the hyperlinks between
articles and posts can be used to represent the spreading of
information from one site to another site. We extract 5 group
of sites, where each group includes 500 sites. Each group is
regarded as a complete graph and each site is considered as
a user. We divide the dataset into two halfs, where the first
half is used to train the payoff matrix and the second half is
used for testing. Fig. 9 shows the results using the proposed
model and the results from the real-world dataset, from which
we can see they match well with each other. We also depict
the variances of the estimated results in Fig. 9, which shows
that the simulated results are always in the variance interval
of the corresponding estimated results. Fig. 9 also reveals the
cohesiveness of different group. We can see that the sites in
Group 5 behave cohesively or share major common interests,
while the sites in Group 1 share relatively little common
interests. This is in particular interesting to advertisement or
advocation scenarios where certain cohesive focus groups need
to be mined to target with high return value.

B. Sequential User Behavior: Chinese Restaurant Game
Framework

Another distinguish feature of social systems is that users
often contribute/participate sequentially at their own time and
space. For example, users sequentially visit question and an-
swering (Q&A) sites like Yahoo!Answers and Stack Overflow,
and decide whether to provide an answer, to vote an existing
answer, or not to participate. Other examples include online
reviews where customers write reviews for the product they
purchase, and social news sites where online users post and
promote stories under various categories.

The existence of network externality [5] in a social group
dictates that users’ actions/decisions influence each other. The
network externality can be either positive or negative. When
it is positive, users will have higher utilities when making the
same decisions. On the contrary, when negative, users tend to
make different decisions from others to achieve higher utilities.
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Fig. 10. System model of Chinese restaurant game.

To achieve better performance, users should take into account
the effect of network externality when making decisions.

On the other hand, users’ decisions are also influenced by
their knowledge on the system. In general, a user’s knowledge
on the system may be very limited due to the uncertainty
in observations. This limitation reduces the accuracy of the
user’s decision and thus the overall system performance. The
phenomenon of limited knowledge can be overcome through
learning [23]–[26]. Users can learn from their previous expe-
riences through machine learning technique and/or from other
users’ decisions and observations through social learning. All
such information can help users to construct a belief, which
can be probabilistic, on the unknown system states. In most
cases, the accuracy of users’ decisions can be greatly enhanced
by taking into account the belief.

Therefore, to achieve the best utilities, users need to consid-
er the effects of both learning and network externality when
making decisions. While there are some existing works on
combining positive network externality with learning [27]–
[29], few works have been done on combining negative
network externality with learning in the literature mainly due
to the difficulty of the problem, where a user has to consider
the previous users’ decisions and predict the subsequent users’.
Furthermore, the information leaked by a user’s decision may
eventually impair the utility the user can obtain. However,
in practice, negative network externality commonly exists in
social systems where users share and/or compete with re-
sources and contents. To address this issue, we have developed
a joint learning-decision making framework, called Chinese
Restaurant Game [30], [31], to study users’ sequential learning
and decision-making behavior in social systems.

1) Chinese Restaurant Game Framework: The well-known
Chinese restaurant process has been used in various fields
including machine/social learning, speech recognition, text
modeling, and object detection in images and biological data
clustering [32]. It offers an ideal structure to jointly formulate
the decision making problems with negative network exter-
nality. The Chinese restaurant process is a non-parametric
learning method for unbounded number of objects in machine

learning. In a Chinese restaurant process, a restaurant has
infinite number of tables and customers arrive the restaurant
sequentially. When a customer enters, he/she either joins one
of the existing tables or requests a new table with a pre-
determined probability. However, there is not yet any notion
of strategic decision-making in Chinese restaurant process.

By introducing the strategic behavior into the non-strategic
Chinese restaurant process, we proposed a new framework,
called Chinese Restaurant Game [30], [31], to study the
learning and decision-making problem with negative network
externality. To illustrate the framework, let us start with a
Chinese restaurant with fixed number of tables, and customers
sequentially come in requesting for seats from these tables.
Each customer may request a table to sit. Since tables are
available to all customers, there may be multiple customers
requesting to sit at the same table, which thereafter incurs
the negative network externality. We can imagine the more
personal space a customer has, the more comfortable in dining
experience. Moreover, when the table sizes are unknown to
the customers (before arriving the restaurant), each of them
may resort to some “signals” (e.g. through advertisements
or previous customers) about the table sizes. By observing
previous actions or signals, a user can exercise a learning
process to make up the shortcoming of limited knowledge.
With the proposed Chinese Restaurant Game, we are able to
develop an analytical framework involving the learning and
decision-making with negative network externality.

As shown in Figure 10, in the Chinese Restaurant Game,
there is a Chinese restaurant with K tables numbered
1, 2, ...,K and N customers labeled with 1, 2, ..., N . The table
sizes are determined by the restaurant state θ ∈ Θ and the table
size functions {R1(θ), R2(θ), ..., RK(θ)}. When customer i
arrives, he/she receives a signal si about the state θ and makes
a decision which table to sit such that he/she can maximize
his/her utility, based on what was observed and the prediction
to future customers’ decisions. The prior distribution of the
state information is assumed to be known by all customers.
The signal is generated from a predefined distribution. Since
there are uncertainties on the table sizes, customers who arrive
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Fig. 11. Yelp star rating declines after a successful Groupon deal.
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Fig. 12. (a) Utility function modeling using real data from Groupon and Yelp; (b) The performance comparison of our method with the learning method
without negative network externality.

first may not choose the right tables, due to which their
utilities may be lower. On the other hand, customers who
arrive later may eventually have better chances to get the better
tables since they can collect more information to make the
right decisions. In other words, when signals are not perfect,
learning can help to result in higher utilities for customers
choosing later. Therefore, there is a trade-off between more
choices when playing first and more accurate signals when
playing later. To study this trade-off, some questions need to
be answered: How can customers learn from their own signals
and the information revealed by other customers? How can
customers predict the decision of future customers and what
are the best strategies of customers?

To study how customers learn from the revealed information
from others and their own signals, we first introduce the
concept of belief to describe customers’ uncertainty about the
system state. One customer’s belief on the system state is
the conditional probability of the system state given all the
information observed by the customer as follows

gi = {gi,l|gi,l = P (θ = l|hi, si,g0), ∀l ∈ Θ}, (6)

where hi = {s1, s2, ..., si−1} is the signals observed by
customer i and g0 = {g0,l|g0,l = P (θ = l),∀l ∈ Θ} is the
prior distribution.

With Bayesian learning [25], rational customers use Bayes
rule to find the optimal estimate about the system state and
update their belief on the system state as follows

gi,l =
g0,lP (hi, si|θ = l)∑

l′∈Θ g0,l′P (hi, si|θ = l′)
. (7)

Due to the rationality and selfish nature, customers will
choose their strategies to maximize their own utilities. In such
a case, considering the incomplete information about the future
customers, the best response of a customer is to maximize
his expected utility based on all the observed information as
follows

BEi(ni, si,hi) = argmax
j

E
[
Ui(Rj(θ), n

∗
j )|ni, si,hi, xi = j

]
,

(8)
where n∗

j is the final number of customers choosing table j,
Ui(Rj(θ), n

∗
j ) is the utility of customer i choosing table j,

ni = {ni1, ni2, ..., niK} is the grouping observed by customer
i with nik being the number of customers choosing table k
before customer i, and xi is the action of customer i.

Note that the best response is determined by the final group-
ing, which depends on the subsequent customers’ decisions.
Since the decisions of subsequent customers are unknown
to a customer when the customer is making the decision, a
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Fig. 13. A new restaurant’s strategy: the upper row shows the number of customer choosing the restaurant with low quality and with high quality, respectively,
while the lower row shows the result of the revenue of the restaurants.

closed-form solution to the best response function is generally
impossible and impractical. To find the best response for each
customer, a recursive method based on backward induction is
designed [31]. The key idea is to use next customer’s best re-
sponse BEi+1(ni+1, si+1,hi+1) to derive current customer’s
best response BEi(ni, si,hi).

With the best response function, a customer’s optimal
decision is purely determined by the received signal given
the grouping, i.e., the number of customers on each table,
and the information revealed by other customers. Therefore,
we can partition the signal space into subspaces where within
each subspace, the customer will choose a specific table. By
integrating the signal over each subspace, we can derive a
recursive form of the probability mass function for the final
grouping, i.e., the final number of customers on each tables.
With the recursive form of the final grouping, the expected
utility of each customer can be computed and the best response
of all customers using backward induction can be derived.

From previous discussions, we can see that the learning and
decision making in the Chinese Restaurant Game framework
are interweaved. On one hand, customers learn the system
state from the information revealed by previous customers for
better decision makings. On the other hand, the decisions and
information revealed by the customers will affect subsequent
customers’ learning and decision making processes. Moreover,
before any decision making, the utility function in (8) needs
to be learned from the real data.

2) Experiments with Real Data from Social Systems: We
use the deal selection on Groupon as an example to illustrate
the Chinese Restaurant Game framework. Many have the
experiences that some deals on Groupon look pretty good but
eventually turn out to have poor quality due to the overwhelm-
ing number of customers showing up at the same time, i.e., the
negative network externality is at work here. By collecting the
data on Groupon and Yelp around the Washington D.C. area
for eight months, we indeed observe the decline of Yelp review
rating after some successful Groupon deals, as depicted in Fig.
11. One can see a nonlinear decline function in review rating.
Let us use the real Yelp rating data to train the utility function
of customers by approximating as a linear model, as shown in
Fig. 12-(a). Then, based on (8), we evaluate the average utility,
which is the average review rating customers can obtain. A
comparison was made between the decision learning method,
denoted as “learning with negative network externality”, and
that does not consider negative network externality, denoted
as “learning without negative network externality”. Note that
the “learning with negative network externality” considers the
interplay between the learning and decision making while
“learning without negative network externality” only considers
the learning of system state but totally ignoring the influence
among customers’ decision makings. The results are shown
in Fig. 12-(b). One can see that by combing learning with
negative network externality, the proposed method can achieve
much better utility for customers.

We further study the best pricing and promotion strategy
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Fig. 14. An example of microtask crowdsourcing.

of a new restaurant under the Chinese Restaurant Game
framework. Let us consider two restaurants, one is always
of high quality and the other is a new restaurant which
could be of low or high quality. The same utility function
trained from the real data in the above experiment is used
to infer the strategy. The results are shown in Fig. 13. One
can see that if the new restaurant is of low quality, then the
number of customers choosing the new restaurant decreases
as signal quality increases, and vice versa. One can also see
that the optimal deal price of the high-quality restaurant is
higher than that of the low-quality restaurant. Therefore, high
quality restaurant should try every effort to increase the signal
quality, while low quality restaurant should hide the quality
information and use a low deal price to attract customers to
increase the revenue. This offers a vivid example of utilizing
data to learn and come out with an optimal strategy.

3) Extension to Chinese Restaurant Game Family: We have
discussed the Chinese Restaurant Game under a fixed popula-
tion setting, i.e., there is a finite number of customers choosing
the tables sequentially. However, in some applications, cus-
tomers may arrive and leave the restaurant at any time, which
results in the dynamic population setting. Examples include
cloud storage service selection, deal selection on Groupon,
and WiFi access point selection in a conference hall [33]. In
such a case, the utilities of customers will change from time
to time due to the dynamic number of customers on each
table. To tackle this challenge, we have extended the Chinese
Restaurant Game to the dynamic population setting [34], [35],
where we consider the scenario that customers may arrive and
leave the restaurant with, for example, a Poisson process. With
such a dynamic population setting, each new coming customer
not only learns the system state according to the information

received and revealed by former customers, but also predicts
the future customers’ decisions to maximize the utility.

The Chinese Restaurant Game is proposed by introducing
the strategic decision-making into the Chinese restaurant pro-
cess, where each customer can choose one table to maximize
the utility. However, in some applications, users may want
to simultaneously choose multiple resources. For example,
mobile terminals may access multiple channels, cloud users
may have multiple cloud storage services, and students may
take multiple online courses. To further generalize the setting,
we have introduced the strategic decision-making into another
well-known random process, Indian buffet process [36], and
develop a new framework, called Indian Buffet Game, to
study the learning and decision-making problem with negative
network externality under the scenario that customers can have
multiple choices [37]. In the Indian Buffet Game framework,
we also consider multi-slot interactions where customers can
interact and make decision repeatedly and partial information
reveal where customers only reveal beliefs instead of full
signals to others. We use the non-Bayesian social learning
to learn from each other to improve the knowledge of the
system and thus make better decisions. Similar extension can
be applied to multi-armed bandit problems by introducing a
decision making processing into its formulation.

III. MECHANISM DESIGN IN DECISION LEARNING

In this section, we will address decision learning from
system point of view, i.e., can we design mechanisms for users
to learn the desired behavior and thus achieve goals of the
system designer? An example from microtask crowdsourcing
is shown to illustrate how to design mechanism for obtaining
high-quality data for data analytics.
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One key factor for the success of supervised/semi-
supervised learning is the large scale labeled dataset [1], [2].
In general, a larger scale dataset will lead to a more accurate
model and thus better performance. However, large scale
annotation is very expensive, which often becomes one of the
bottlenecks of supervised/semi-supervised learning. To address
this challenge, microtask crowdsourcing, with the access to
large and relatively cheap online labor pool, is a promising
way since it can generate large volume of labeled data in a
short time at a much lower price compared with traditional
in-house solutions. An example of microtask crowdsourcing
is illustrated in Fig. 14.

On the other hand, due to the lack of proper incentives,
microtask crowdsourcing suffers from quality issues. Since
workers are paid a fixed amount of money per task they com-
plete, it is profitable for them to provide random or bad quality
solutions in order to increase the number of submissions within
a certain amount of time or effort. It has been reported that
most workers on Mturk, a leading marketplace for microtask
crowdsourcing, do not contribute high quality work [38]. To
address this issue, a common machine learning solution is to
either add a data curation phase to filter out low quality data or
to modify the learning algorithm to accept noisy labels [39]–
[43].

Different from existing machine learning solutions, we tack-
le such a problem by incentivizing the high quality data from
the first place [44], e.g., from the workers. This problem is
challenging due to the inherent conflict between incentivizing
high quality solutions from workers and maintaining the low
cost advantage of microtask crowdsourcing for requesters. On
one hand, requesters typically have a very low budget for each
task in microtask crowdsourcing. On the other hand, the imple-
mentation of incentive mechanisms is costly as the operation
of verifying the quality of submitted solutions is expensive
[39]. Such a conflict makes it extremely challenging to design
proper incentives for microtask crowdsourcing. Therefore, it
motivates us to ask the following question: what incentive
mechanisms should requesters employ to collect high quality
solutions in a cost-effective way? In a general sense, the core
problem is how to design mechanism for obtaining “good”
data?

To answer the question above, we first study and model
the behavior of workers. Specifically, let us consider a model
with strategic workers, where the action of a worker is the
quality of the solution q ∈ [0, 1], and the primary objective of
a worker is to maximize his own utility, defined as the reward
he/she will receive minus the cost of producing solutions of a
certain quality c(q). Based on this model, we analyze two basic
mechanisms that are widely adopted in existing microtask
crowdsourcing applications: reward consensus mechanism Mc

and reward accuracy mechanism Ma [44].

A. Reward Consensus Mechanism Mc

With this mechanism, a task is assigned to multiple workers.
Only the same answer that is submitted by the majority of
workers will be chosen as the correct solution, and the workers
whose solution agrees with the correct one will receive a

positive reward. Through analyzing this mechanism, we find
that there exists a minimum mechanism cost per task in order
to obtain high quality solutions [44],

C∗
Mc

= 3c′(1), (9)

where c′(1) is the first order derivative of the cost function
c(q) evaluating at the desired solution quality q = 1.

B. Reward Accuracy Mechanism Ma

This mechanism assigns each task only to one worker.
The requester evaluates with a certain probability the quality
of submitted solutions directly, where each validation incurs
a constant cost d. The validation can be erroneous with a
probability of ϵ. The workers whose solution is not evaluated
or evaluated and confirmed as correct solution will receive a
positive reward. Through analyzing this mechanism, we again
find that there exists a minimum mechanism cost per task in
order to obtain high quality solutions [44],

C∗
Ma

=

 2
√

c′(1)d
1−2ϵ − ϵ c′(1)

1−2ϵ , if d ≥ c′(1)
1−2ϵ ;

c′(1)(1−ϵ)
1−2ϵ + d, otherwise.

, (10)

From (9) and (10), we can see that in order to obtain high
quality solutions using the two basic mechanisms (Mc and
Ma), the unit cost incurred by requesters per task is subject
to a lower bound constraint, which is beyond the control of
requesters. In case that the budget of the requester is lower
than the minimum cost constraint, it becomes impossible for
the requester to achieve desired quality solutions with these
two basic mechanisms. In other words, neither of these two
basic mechanisms is cost-effective.

C. Incentive Mechanism via Training Mt

To tackle this challenge, we design a cost-effective mech-
anism by employing quality-aware worker training as a tool
to stimulate workers to provide high quality solutions [44].
Different from current microtask crowdsourcing applications
where training tasks are usually assigned to workers at the
very beginning and are irrelevant to the quality of submitted
solutions, we use the training tasks in a more effective way
by assigning them to workers when they perform poorly. That
is when a worker performs poorly, he/she will be enforced to
enter a training session without reward to regain accreditation
to be able to go back to perform in the regular session with
reward.

With the introduction of quality-aware training tasks, there
will be two system states in our proposed mechanism: the
working state and the training state. The working state is for
production purpose where workers work on standard tasks in
return for reward, while the training state is an auxiliary state
where workers do a set of training tasks to gain qualifications
for the working state. The state transition diagram is shown
in Fig. 15, where Pw(q̃w, qw) represents the probability of a
solution with quality qw being accepted in the working state
when other submitted solutions from working state are of
quality q̃w, and Pt(qt) is the probability of a worker who
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Fig. 15. The state transition diagram of the incentive mechanism Mt.
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Fig. 16. Histogram of accuracy: (a) the results using the reward accuracy mechanism Ma with sampling probability 1; (b) the results using the reward
accuracy mechanism Ma with sampling probability 0.3; (c) the results using the incentive mechanism Mt with sampling probability 0.3.

produces solutions of quality qt at the training state being
allowed to enter the working state next time.

From Fig. 15, we can see that the current action of a worker
will affect the future system state of the worker. In other
words, the quality of a worker’s solution to one task will
affect not only the worker’s immediate utility but also his
future utility due to the possible change of the system state.
Such a dependence provides requesters with an extra degree of
freedom in designing incentive mechanisms and thus enables
them to collect high quality solutions while still having control
over their incurred costs.

To find the optimal action, each worker must solve a Markov
Decision Process (MDP) according to the state transition
diagram shown in Fig. 15, and the MDP faced by each worker
also depends on other workers’ actions. In essence, this is
a challenging game-theoretic MDP problem [44]. Through
analyzing the incentive mechanism Mt, we find that as long
as the number of training tasks is large enough, there always
exists a desirable equilibrium where workers submit high
quality solution at working state. In other words, given any
parameters in the working state, one can always guarantee the
existence of desirable equilibrium through the design of the
training state. When the desirable equilibrium is adopted by all
workers by floowing a certain design procedure, the minimum
mechanism cost is theoretically proved to be 0 [44], i.e.,

C∗
Mt

= 0, (11)

which means that one can collect high quality solutions with an
arbitrarily low cost. In other words, given any pre-determined

budget, the incentive mechanism Mt enables the requester to
collect high quality solutions while still staying within the
budget.

Notice that one can easily achieve better learning purposes
with the high quality data collected by the incentive mecha-
nism Mt. Therefore, through modeling and analyzing users’
strategic decision making process, one can design mechanisms
from system point of view to steer users’ strategic behaviors
to obtain better quality data for better learning.

D. Real Behavioral Experiments

A set of behavioral experiments are conducted to test
the incentive mechanism Mt in practice. We evaluate the
performance of participants on a set of simple computational
tasks under different incentive mechanisms. We compare the
incentive mechanism Mt with the reward accuracy mechanism
Ma where the quality of submitted solutions is evaluated with
a certain probability.

There are 41 participants in our experiments, most of whom
are engineering graduate students. We use the accuracy of each
participant as an indicator to the effectiveness of incentive
mechanisms, and the results are shown in Fig. 16, where
(a) shows the results of the reward accuracy mechanism Ma

with sampling probability 1, i.e., every submitted solution
is evaluated; (b) shows the results of the reward accuracy
mechanism Ma with sampling probability 0.3, i.e., 30% of
the submitted solutions are evaluated; and (c) shows the
results using the incentive mechanism Mt with the sampling
probability as that in (b).
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Fig. 17. The Coming Big Data Tsunami.

As shown in Fig. 16-(a), with the highest sampling prob-
ability, most participants respond positively by submitting
solutions with very high qualities. There is only one participant
who had relatively low accuracy compared with others in
that he was playing the strategy of “avoiding difficult tasks”
according to our exit survey. When a much lower sampling
probability of 0.3 is used, it becomes profitable to increase the
number of submissions by submitting lower quality solutions,
as most errors will simply not be detected. This explains
why the majority of participants had very low accuracies as
shown in Fig. 16-(b). Noteworthily, a few workers, 5 out
41, still exhibited very high accuracies in this case. Our exit
survey suggests that their behaviors are influenced by a sense
of “work ethics”, which prevents them to play strategically
to exploit the mechanism vulnerability. With the incentive
mechanism Mt, as the introduction of training tasks makes
it more costly to submit wrong solutions, participants need to
re-evaluate their strategies to achieve a good tradeoff between
accuracy and the number of submitted tasks. From Fig. 16-(c),
we can see that the accuracy of participants with the incentive
mechanism Mt has a very similar distribution as that using
the reward accuracy mechanism Ma with the highest sampling
probability. Therefore, through the use of quality-aware worker
training, the incentive mechanism Mt can greatly improve the
effectiveness of the basic reward accuracy mechanism Ma with
a low sampling probability to a level that is comparable to the
one that has the highest sampling probability.

IV. RELATED WORKS

Albeit not termed as decision learning, there has been a
growing body of literature in recent years on the intersection
of learning and strategic decision making, mostly from the
computer science community. One class of related works is
learning to understand how human beings make strategic de-
cisions from real data. For example, classical machine learning
techniques are used in [45] to predict how people make and

respond to offers during the negotiation and how they reveal
information and their response to potential revelation actions
by others. Their results showed that the strategies derived
from machine learning algorithms, even still not optimal, can
beat that of the real human beings [45]. The study of year-
long empirical data shows that an experienced human being
in a repeated game will be more cooperative, but turn the
table more definitely when he is betrayed by the opponent
[46]. Additionally, the study in [47] shows that human beings
behave as having very limited memory space and computation
capability, which limits the optimality of their decisions. It
has also been shown in [48] that a dynamic belief model
by ignoring the older signals in constructing the belief works
best in predicting human being decisions. Through empirically
analyzing the purchase history on Taobao, a large-scale online
shopping social network, Guo et al. revealed that a real human
values purchase experiences shared by his friend and would
pay higher price for trustful vendors [49]. Nevertheless, in such
a complicated system, it is still difficult to predict the purchase
decisions which accuracy over 50% using traditional machine
learning algorithms [49]. In [50], how users make decisions
on social computing systems is learnt from real data, and used
to guide the design of mechanism for the systems.

Another class of related works is finding equilibrium
through learning. Finding Nash equilibrium is critical yet
challenging in most game models since its difficulty has been
shown to be PPAD in general settings or even NP-complete
in specific problems [51]. Given that a general and exact
solution is intractable, it is a natural choice to design proper
learning algorithms to find the solutions. No-regret learning,
for instance, has been shown to be a practical candidate.
It has been applied in extensive-form game to reduce the
number of subgame trees to explore [52]. The sufficient
conditions for such type of learning algorithms to converge
in the selfish routing problem [53] are also theoretically
studied. Reinforcement learning is another candidate since
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its action-reward structure naturally forms the best response
dynamic in game theory. Since traditional Q-learning may
fail to converge if directly applied in a game, especially
when the Nash equilibrium is not unique, maxmin Q-learning
is proposed in [54] to find the Nash equilibrium in two-
player zero sum game. The objective of maxmin Q-learning
is modified from pure reward maximization into a maxmin
problem with opponent’s actions in mind. Nash Q-learning,
a more general Q-learning algorithm is proposed in [55] to
handle multi-player game with non-zero sum. The objective
of Nash Q-learning is replaced with equilibrium conditions
defined in game theory. The experiment results show that
Nash Q-learning can help identify better Nash equilibrium than
traditional Q-learning algorithm. Learning has also been used
to reduce the complexity in finding the subgame-perfect Nash
equilibrium in a sequential game [56], which is PSPACE-hard
in general. In [57], MDP and Monte Carlo simulation is used
to reduce the complexity in identifying the optimal bidding
strategy in sequential auctions.

There have also been some related works that formulate
the training problem in machine learning as a game. For
instance, it has been shown in [58] that a class of online
learning algorithms can be modeled as a drifting game with
both trainer and the system as players. The learning algorithm
in such a formation becomes the best response of the trainer
to the system’s reply to each training problem. Another
application is maintaining fairness in multi-agent sequential
decision problem. Given that the objective of the system is
max-min fairness, one may model the learning model as a
two-player game, where the first player aims at maximizing
the utility of the target agent who is chosen by second player,
while the second player chooses the agent with lowest utility
as the target agent [59].

Active learning is another related field [60]. Through ac-
tively choosing which data to learn from, active learning
algorithms have the potential to greatly reduce the amount of
labeling effort in machine learning algorithms. Active learning
with explicit labeling cost has been widely studied [61]–[64].
It is known that active learning algorithms degrade quickly as
the noise rate of labels increases [65]. To address the quality
issue in labeled data collection, a variety of approaches have
been proposed to filter low quality labels and to increase the
robustness of machine learning algorithms [39]–[43]. In [66],
a game-theoretic dynamics was proposed to approximately de-
noise the data to exploit the power of active learning. Incentive
mechanisms have also been utilized to improve the quality of
collected data. In [12], [67], [68], all-pay auctions are applied
to incentively high quality user contributions. In [69], Shaw
et al. conducted an experiment to compare the effectiveness
of a collection of social and financial incentive mechanisms.
A reputation-based incentive mechanism was proposed and
analyzed for microtask crowdsourcing in [70]. In [71] and
[72], Singer and Mittal proposed an online mechanism for
microtask crowdsourcing where tasks are dynamically priced
and allocated to workers based on their bids. In [73], Singla
and Krause proposed a posted price scheme where workers
are offered a take-it-or-leave-it price offer.

A non-strategic but related problem is the multi-armed

bandit problem [74]. In the multi-armed bandit problem, a
bandit with multiple arms is provided to a gambler. The
gambler may have different levels of rewards by playing
different arms each time. Thus, the gambler may try and learn
in each play in order to maximize his collected rewards. Liu
and Zhao extended this model by considering multiple agents
and including the network externality in [75]. They studied
how agents learn the expected payoff and other agent’s choice
by estimating the regrets after choosing different arms based
on his current belief. A multi-armed bandit problem with costs
in observations is discussed in [76]. Nevertheless, traditional
study in multi-armed bandit problem is generally non-strategic.
They assume agents will always follow the learning rule
designed by the system designer. Combining strategic thinking
with multi-armed bandit problem has gained more attentions
recently mainly due to a popular and practical application:
website ad auction. The ad slot on a website is usually sold
through auction. The value of the ad depends on two factors:
the value of the product in the ad, and the expected number of
clicks on the ad. The former one is known by the advertiser
and can be collected through truthful auction such as Vickery
auction. Nevertheless, the expected number of clicks, or the
Click-Through-Rate (CTR) of the ad, is unknown to both
the website owner and the advertiser. No-regret algorithm in
multi-armed bandit problem can be used to learn CTR while
maintaining the truthfulness of the auction [77] [78]. In [79],
it is shown that increasing number of explore stages will push
the buyers to reveal their true valuation more, with fewer
exploit stages for sellers to gain extra revenue from the learned
valuation in return.

V. CONCLUSION AND FINAL THOUGHT

Decision learning is learning with strategic decision mak-
ing that can analyze users’ optimal behaviors from users’
perspectives while design optimal mechanisms from system
designers’ perspectives. In this paper, we have used three
social media examples to highlight the concepts of decision
learning. Specifically, information diffusion over online social
networks was used to illustrate how to learn users’ utility
functions from real data for understanding/modeling strategic
decision making; deal selection on Groupon/Yelp was used
to discuss how to learn from each other’s interactions for
better strategic decision making; and microtask crowdsourcing
was used to discuss how to design mechanism to steer users’
strategic behaviors to obtain better quality data for better
learning. Besides the three examples discussed in this paper,
there can be other forms of joint learning with strategic
decision making, including those discussed in section IV. In
essence, in the coming big data tsunami, when a large volume
of data is available, users can learn better models to improve
their own decision making, as depicted in Fig. 17. On the other
hand, their actions result in changes/modifications of the data
pool, which consequently affects the models learned by the
users.

In summary, users’ decisions/actions affect each others in
an ever changing fashion for user-generated data applications.
Decision learning is an emerging research area to bridge
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learning from large volumes of data with strategic decision
making that models/understands user behaviors.
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