

PARTIAL LEAST SQUARES BASED RANKER FOR FAST AND ACCURATE AGE ESTIMATION Hong Liu, Xiaohu Sun Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, China {hongliu, xiaohusun}@pku.edu.cn Presenter: Xiaohu Sun 10000000000 – Train: Code ages and train PLS model – PLS code **Regression Coeff** 11110000000... Train: Learn adaptive thresholds - PCR .1111110000.... ... - Test - MLR feat. To a laten **PLS-Ranker** To a latent extr ----subspace subspace PLS PLS Rankers show favorable performance by exploiting the ordinal nature of ages. thr sum →Age:54 Transform the advanced multivariate data analysis (MVA) tool PLS, into a ranker to model **Regression Coeff.** (b) MLR, PCR and PLS coefficients calculation (a) Flow chart of age estimation using PLS-Ranker For the *j*-th ($j = 1, 2, \dots, M_a - 1$) binary classifier: **Comparison with the state-of-the-art methods** $\operatorname{thr}_{j} = \arg \max_{b \in S} \sum_{i=1}^{n} f_{m}(A_{i,j}) \times f_{m}(\llbracket \widehat{A}_{i,j} \ge b \rrbracket)$ 3 on FG-NET and MORPH (Setting 2) The proposed adaptive threshold learning strategy makes each basic binary **1. MAE** classifier of PLS-Ranker robust to the imbalance problem of its positive and Test process Me \mathbf{x}_t (1 × N) is mapped to an indicator vector $\hat{\mathbf{a}}_t$ using the trained linear PLS model: PLS-Ranker simultaneously reduces feature dimension and ranks in high M $\hat{\mathbf{a}}_t = \mathbf{x}_t \mathbf{B}_{pls}$ PL AA Threshold each element of $\hat{\mathbf{a}}_t$ into a binary indicator: Fea $\hat{\mathbf{a}}_t(1,j) \coloneqq \left\| \hat{\mathbf{a}}_t(1,j) \ge \operatorname{thr}_j \right\| \quad j = 1, 2, \cdots, M_a - 1$ 2 Reg • The rank (age) is obtained by summarizing elements in $\hat{\mathbf{a}}_t$: $\hat{r}_t = \sum_{i=1}^{M_a - 1} \hat{\mathbf{a}}_t(1, j) + 1$ Dee **EXPERIMENTS AND DISCUSSIONS** • Datasets **2. Training time** • **FG-NET**. Leave one person out. Tested on an Intel(R) Core i5-3470 (3.2GHz), 8G RAM PC. MORPH. Setting 1 and Setting 2. **MORPH** Method **FG-NET** OHRank [4 SVR [23] $A_{i,j} = \begin{cases} 1, & \text{if } j < y_i \\ 0, & \text{if } j \ge y_i \end{cases}$ CA-SVR [AAM+PLS **BIF+PLS-PLS-Ranker vs. PLS** • Linear PLS is adopted. • PLS can be used for classification and metric regression. Simultaneous dimensionality reduction and ranking. • Usually $p \ll N$ holds, and more latent variables (big p) are not • Compare PLS-Ranker with the two usages of PLS on FG-NET and necessarily in practice. MORPH (Setting 1). MAE/year (num. of latent var.) **Robustness to race and gender variations** Method FGNET MORPH Results on the multi-source cross-race-and-gender age estimation 6.10 (33) PLS (classification) 8.14 (58) problem PLS (regression) 5.78 (17) 4.40 (37) • Under the reduction framework, the key to improve ordinal ranking is to improve **4.17** (49) **PLS-Ranker 4.14** (45) FG-NET MORPH PLS(classification) The unbalanced positive and negative training samples may shift the optimal PLS(regression) PLS-Ranker Apply the trained linear PLS model back to the feature matrix of training set **X** 200 300

INTRODUCTION

- Facial age estimation
- Useful for friendly and secure human robot / computer interactions, age-based access control, family photo management, etc.
- Challenging due to complex dynamics in aging process.

MOTIVATION

- PLS has many excellent characteristics.
- boost the performance in terms of accuracy, speed and robustness, on the age estimation problem.

Advantages of PLS based ranker (PLS-Ranker)

- All binary classifiers are jointly learned.
- negative training data. Thus boosts ranking accuracy of PLS-Ranker.
- speed even for high-dimensional features.

PARTIAL LEAST SQUARES BASED RANKER

- Feature matrix $X(n \times N)$: feature vectors of n training samples.
- Column vector $y(n \times 1)$: scalar age values of n training samples.
- Suppose the age range is $1 \sim M_a$.

Encoding age for jointly learning all associated binary classifiers

- Encode each scalar age y_i $(i = 1, 2, \dots, n)$ into a $1 \times (M_a 1)$ binary row vector $\mathbf{A}(i,:)$.
- Form an $n \times (M_a 1)$ indicator matrix **A**.
- $A_{i,i}$ indicates whether the face *i* is older than *j* years.

Train a linear PLS model

- Use the feature matrix X and indicator matrix A to train a linear PLS model.
- Get the regression coefficient matrix \mathbf{B}_{pls} .

Adaptive threshold learning 3.

- Imbalance problem
- Reduce ranking to associated binary classifications: Is the face older than j years? $j = 1, 2, \dots, M_a - 1$
- binary classifications.
- However, the positive and negative training samples for each of the binary classifiers can be highly unbalanced.
- thresholds away from 0.5.
- Learn thresholds from the unbalanced training data
- Get a prediction of indicator matrix **A**, $\widehat{\mathbf{A}}$:

$$\widehat{\mathbf{A}} = \mathbf{X}\mathbf{B}_{pls}$$

- $\widehat{\mathbf{A}}$ is a real-valued matrix.
- Thresholds are searched in a small range *S* around 0.5.
- Determined by the criterion of minimizing the error rate on the training set.

number of latent variables

	MAE/year		
ethod	FGNET	MORPH	
TWGP [2]	4.83	6.28	
LO [14]	4.82	—	
AM+CA-SVR [15]	4.67	5.88	
at. combine + select [22]	4.49	—	
AM+CS-OHRank [4]	4.48	6.07	
egularized CA-SVR [17]	4.37	—	
eep Feature+SVR [3]	4.26	4.77	
AM+PLS-Ranker	4.14	5.38	
F+PLS-Ranker	—	3.77	

Training time/min			
	FGNET	MORPH	
4]	1.30×10^{4}	3.02×10^{4}	
	2.69×10^0	2.08×10^1	
[15]	8.91×10^{-1}	6.10×10^{0}	
S-Ranker	7.20×10^{-3} (0.43s)	2.25×10^{-2} (1.35s)	
-Ranker		1.25×10^{-1} (7.51s)	

Train	Test -	MAE/year (num. of latent var.)	
		CpDA [20]	PLS-Ranker
BF+WF	BM	6.47	4.55 (27)
BF+WF	WM	5.70	3.87 (49)
VM+BM	WF	6.58	5.10 (80)
VM+BM	BF	6.40	5.49 (67)
BF+BM	WF	6.59	5.24 (88)
BF+BM	WM	5.23	3.85 (63)
WF+WM	BF	6.32	5.65 (39)
WF+WM	BM	5.96	4.49 (31)
Averag	ge	5.99	4.48 (25.31%)