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Introductionp

I Most polychromatic X-ray CT reconstruction methods assume known X-ray spectrum
and materials. However,
I the X-ray spectrum measurements based on the semiconductor detectors are usually

distorted by charge trapping, escape events, and other effects [Red+09] and the corre-
sponding correction requires highly collimated beam and special procedures [Lin+14].

I knowing the mass-attenuation function
can be challenging when the inspected material is unknown, or the inspected object
is made of compound or mixture with unknown percentage of each constituent.

Our Goal: Develop a blind sparse density-map reconstruction scheme from measurements
corrupted by Poisson noise.
Notation: “�” is the elementwise version of “�”; the elementwise log Œlnı a�i D ln ai ; 8i ;
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Measurement Modelp
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Figure 1: Relationship between mass atten-
uation �, incident spectrum �, photon energy
", and mass-attenuation spectrum ι.�/.

�J C1�j0

�j0

š.�/

�

š.�/
b.�/I

Klow Kmid Khigh

Figure 2: B1-spline approximation of ι.�/.

Denote by N the total number of measure-
ments from all projections collected at the de-
tector array. For the nth measurement, define
its discretized line integral as ˛; stacking all N

such integrals into a vector yields ˆ˛, where
ˆ D Œ�1 �2 � � � �N �T 2 RN �p (1)

is the known projection matrix. Con-
struct mass-attenuation spectrum ι.�/ [GD13;
GD16] (see Fig. 1) and expand it as

ι.�/ D b.�/I (2a)
where b.�/ are known 1 � J B1-spline vectors
with knots �j D �0q

j selected from a growing
geometric series with common ratio q > 1, J

is the number of basis functions, and

I D
�
Ij

�J

j D1
� 0 (2b)

is an unknown J � 1 vector of corresponding
basis-function coefficients; see Fig. 2.
Noiseless measurements. N � 1 vector of noiseless
energy measurements:

Iout.˛;I/ D bL
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where
˛ D
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iD1
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is an unknown p � 1 vector representing the 2D image we wish to reconstruct and bL
ı
.s/ is

an output basis-function matrix obtained by stacking the 1 � J vectors bL.sn/ columnwise.
Noisy measurements. For independent Poisson measurements E D .En/N

nD1, the negative
log-likelihood (NLL) is
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Theorem 1 (Biconvexity)
The NLL (5) is biconvex with respect to ˛ and I in the following set:
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Penalized NLL Objective Function p
Our goal is to compute penalized maximum-likelihood estimates of the density-map and
mass-attenuation spectrum parameters .˛;I/ by solving

min
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where
f .˛;I/ D L.˛;I/ C ur.˛/ C IŒ0;C1/.I/ (8a)
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are the penalized NLL objective function and the density-map regularization term that
enforces nonnegativity and sparsity of the signal ˛ in the total-variation (TV) domain.
Here, u > 0 is a scalar tuning constant and Ni is index set of neighbors of ˛i , where the
elements of ˛ are arranged to form a 2D image [BT09].

Corollary 1
f .˛;I/ is biconvex with respect to ˛ and I under the conditions of Theorem 1.

Theorem 2 (Kurdyka-Łojasiewicz (KL) Property)
f .˛;I/ satisfies the KL property in any compact subset C � dom.f /.

Minimization Algorithm p
Iteration i for minimizing (8a) updates ˛ and I alternatively:
1. (NPG) Fix I D I .i�1/ and descend f .˛;I .i�1// by applying a Nesterov’s

proximal-gradient (NPG) step [Nes83] for ˛:
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�
, the minimization (9c) is computed using an inner iteration

that employs the TV-based denoising method in [BT09, Sec. IV], and ˇ.i/ > 0 is an
adaptive step size chosen to satisfy the majorization condition:
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using a patient adaptation scheme that aims at finding the largest ˇ.i/ that satisfies
(9d), see [GD15] for details. We apply function restart [OC13] to restore the
monotonicity and improve convergence of NPG steps.

2. (BFGS) Set the design matrix A D bL
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using the inner limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints
(L-BFGS-B) iteration [Byr+95], initialized by I .i�1/.

Iterate between Steps 1 and 2 until the relative distance of consecutive iterates of the
density map ˛ does not change significantly:
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where � > 0 is the convergence threshold. The convergence criteria for the inner
TV-denoising and L-BFGS-B iterations are chosen to trade off the accuracy and speed of
the inner iterations and provide sufficiently accurate solutions to (9c) and (10).

Remark 1 (Monotonicity)
Under the condition (6a) of Theorem 1, the NPG-BFGS iteration with function restart is
monotonically non-increasing:
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Numerical Example
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Performance metric is the relative square error (RSE) of
an estimate b̨ of the signal coefficient vector:

RSEfb̨g D 1 �

� b̨T ˛true
kb̨k2k˛truek2

�2

:

We compare
I NPG-BFGS method,
I NPG for known mass attenuation spectrum ι.�/;
I linearized basis pursuit denoising (linearized

BPDN), which applies the NPG approach to solve
the BPDN problem [BT09]:
min˛ 0:5ky � ˆ˛k2
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I the traditional filtered backprojection (FBP) method without [KS88, Ch. 3] and with
linearization [Her79], i.e., based on the ‘data’ y D �lnı E and y D

�
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ı
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In Fig. 4, average RSEs of the methods that do not assume knowledge of the
mass-attenuation spectrum ι.�/ are shown using solid lines whereas dashed lines represent
methods that assume known ι.�/. Red and blue colors present methods that do and do
not employ signal-sparsity regularization, respectively.
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Figure 3: (a) Density-map image and (b) mass attenuation and
incident X-ray spectrum as functions of the photon energy ".
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Figure 4: Average RSEs as functions of
the number of projections.
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Figure 5: Reconstructions from 60 projections.
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