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Penalized NLL Objective Function Numerical Example

Performance metric is the relative square error (RSE) of
an estimate o of the signal coefficient vector:

Our goal is to compute penalized maximum-likelihood estimates of the density-map and

» Most polychromatic X-ray CT reconstruction methods assume known X-ray spectrum _ _
mass-attenuation spectrum parameters (o, Z) by solving

and materials. However,

- the X- based on the semiconductor d I | _ @ e\’
the X-ray spectrum measurements based on the semiconductor detectors are usually min f (e, Z) (7) RSE{a} =1— .
distorted by charge trapping, escape events, and other effects [Red+09] and the corre- o1 l[ec]]2 ]| ttruell2
sponding correction requires highly collimated beam and special procedures [Lin+14].  where We compare
» knowing the ma.ss—attenuatlor.l function o | | F@.T) = Lo, T) + ur(e) + Ij1o0)(T) (8a) » NPG-BFGS method, \
can be challenging when the inspected material is unknown, or the inspected object » ’ _ imhaginary
. : : . » NPG for known mass attenuation spectrum t(x); N
is made of compound or mixture with unknown percentage of each constituent. () = Z( )’ + 1 () (8b) S detector array
_ _ _ re) = di =4, [0,400) L€ » linearized basis pursuit denoising (linearized S
Our Goal: Develop a blind sparse density-map reconstruction scheme from measurements i—1 \JjeN; BPDN), which applies the NPG approach to solve Xeray source™~ Yy
corrup’Eed b¥. P?I.SSOH nowse. , : g : . are the penalized NLL objective function and the density-map regularization term that the BPDN problem [BT09]:
Notation: "=" is the elementwise version of “>"; the elementwise log [In a]; = Ina;, ¥i; enforces nonnegativity and sparsity of the signal & in the total-variation (TV) domain : 2 / Ly~! : -
soft-thresholding operator [Tx(a)] = sign(a;) max (|ai| — A, O), Vi. (-(s) is the Laplace & / ’ & ' ming 0.5y — @e||; + u'r (a), where y = (L )o (€) are the linearized measurements,

N i Here, u > 0 is a scalar tuning constant and N; is index set of neighbors of «;, where the
transform of 1(k): (*(s) £ [ u(k)e™ dk, Laplace transform with vector argument: elements of « are arranged to form a 2D image [BT09].

a(s) = (aL(Ls*n))iv=1 obtained by stacking a“(s,) columnwise, where s = (sn)iv:l. Corollary 1

Measurement Model

» the traditional filtered backprojection (FBP) method without [KS88, Ch. 3] and with
linearization [Her79], i.e., based on the ‘data’ y = —In, € and y = (LL);l(é').

In Fig. 4, average RSEs of the methods that do not assume knowledge of the
S e, L) is biconvex with respect to a and I under the conditions of Theorem 1. mass-attenuation spectrum w(x) are shown using solid lines whereas dashed lines represent

Denote by N the total number of measure- Theorem 2 (Kurdyka-tojasiewicz (KL) Property) methods that assume known (k). Red and blue colors present methods that do and do

ments from all projections collected at the de- o _ not employ signal-sparsity regularization, respectively.
tector array. For the nth measurement, define S (e, I) satisties the KL property in any compact subset C C dom( f).
its discretized line integral as «; stacking all N Minimization Algorithm 100 0.3 —
such integrals into a vector yields ®a, where o o _ 102 [ linearized FBD --o-— |
. v lteration i for minimizing (8a) updates & and Z alternatively: 10 | 102 lneartzed Do 7~
— “e xp . - i . ) © . NPG (known ((x
O =[¢19, Py €R (1) 1. (NPG) Fix T =Z% and descend f (e, Z0~) by applying a Nesterov's AT %ﬂﬂg\é ) S
. . 1L {01 = o
is the known projection matrix. Con- proximal-gradient (NPG) step [Nes83] for a: Z LT e o
struct mass-attenuation spectrum (k) [GD13; Figure 1: Relationship between mass atten- . 1 0.1 0 %-0-o. S —— o
- - - L o) — — (i—1))2 (9a) 0 40 80 120 160 M
GD16] (see Fig. 1) and expand it as uation «, incident spectrum ¢, photon energy > 1++/1+ 4(9 ) e /keV -t [ Aaa A N
€, and mass-attenuation spectrum (k). 1 R
() = BT (22 20 _ i 4 901y i | | ® I R
aV) =a + —.(oc —o ) Nesterov's acceleration (9b) _ _ _ _ _
_ g@@) Figure 3: (a) Density-map image and (b) mass attenuation and  Figure 4: Average RSEs as functions of
where b (k) are knOWh 1 x J Bl-spline vectors 0) _ 1 () M) _ (i) ||2 incident X-ray spectrum as functions of the photon energy . the number of projections.
with knots k; = koq’ selected from a growing a”’ = argmin W”“ —a" + pYVL (« )“2 + ur(a) (9¢c)

geometric series with common ratiog > 1, J
is the number of basis functions, and

I=(Z)_ =0 (2b)

j=1=

where £.(a) = L(ac, Z~"), the minimization (9c) is computed using an inner iteration
that employs the TV-based denoising method in [BT09, Sec. IV], and B > 0is an
adaptive step size chosen to satisfy the majorization condition:

is an unknown J x 1 vector of corresponding
basis-function coefficients; see Fig. 2.

J‘K . (s . T s 1 . —n?2 ;

) . _ Tieees L () <£(@?)+ () —a?) v (@) + 250 ™ — & | (9d) D | o © o
igure 2: Bl-spline approximation of (k).

Noiseless measurements. N x 1 vector of noiseless

-RSE=11.85% ™ RSE=7.12% RSE=0.55% — RSE=0.21% — RSE=0.19%

using a patient adaptation scheme that aims at finding the largest B) that satisfies

: ) . a) FBP b) linearized FBP  (c) linearized BPDN (d) NPG known u(x e) NPG-BFGS
energy measurements: (9d), see [GD15] for details. We apply function restart [OC13] to restore the (@) (b) (©) (d) (& ()
T, T) = b5 ()T (3) monotonicity and improve convergence of NPG steps. Figure 5: Reconstructions from 60 projections.
where 2. (BFGS) Set the design matrix 4 = bk(cboc(l)), treat it as known, and minimize the
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