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Introduction

Motivation
•Parametric Bayesian spectral estimation outperforms the

conventional Fourier Transform (FT) based methods at the

expense of computational time.

• Increased frequency resolution in ultrasound signal

analysis may reveal new diagnostic information.

Research Question
•Can ultrasound signals be fully characterized (frequency,

amplitude, phase, noise) based on Bayesian spectral

estimation?

Summary

Background
• In ultrasound, the reflected echoes from point scatterers,

are short sinusoidal signals with many closely spaced

frequency components.

•The frequency resolution attained by the FT is limited by

the small number of signal samples.

•Prior knowledge and parametric spectral estimation can be

used to extract previously hidden signal characteristics.

Objective
•Reconstruct real ultrasound signals based on an already

existing rjMCMC algorithm.

•Reduce the calculation load the method introduces.

•Compare the initial and reconstructed signal and identify

the benefits of the parametric estimation.

Approach
•Apply a modified rjMCMC algorithm to the acquired

ultrasound point scatter data.

•Extract a reasonable summary of the algorithm’s output

through clustering, outlier rejection and signal comparison.

Results
•The correlation coefficient between the original and the

(noise-free) reconstructed signal is measured to 0.987.

•The minimum difference between neighboring frequencies

that are both identified by the parametric approach is

110 kHz, whereas the FT theoretical limit is 220 kHz.

•The burn-in period of a single algorithm realization is

reduced by 20%

Bayesian Inference

•Parametric estimation assumes a signal model and the

received echoes are represented as a sum of sines and

cosines in white Gaussian noise.

•A prior distribution is selected for each of the unknown

model parameters:

Parameter Prior distribution

Model order (k ) Truncated Poisson Distribution

Frequencies (ωk) Uniform Distribution

Amplitudes (ak) Multivariate Normal Distribution

Noise variance (σ2
k) Jeffrey’s uninformative prior

Hyperparameter of k (Λ) Gamma Distribution

Hyperparameter of ak (δ2) Inverse Gamma Distribution

•The joint prior distribution is given by the product of all

individual priors and the joint posterior distribution can be

calculated as:

p(Ψ | y) =
p(Ψ)p(y | Ψ)

p(y)
∝ p(Ψ)p(y | Ψ) , (1)

where Ψ = (k, {ωk, ak, σ
2
k}), p(Ψ) denotes the joint prior distri-

bution and p(y | Ψ) the likelihood function.

rjMCMC Algorithm

1: Insert the input signal to the algorithm

2: Employ the MUSIC method to provide an initial spectrum

estimate: (k(0), {ωk, ak, σ
2
k}

(0))
3: for i = 1 to numIteration do

4: Sample Λ, δ2

5: Sample u from U(0,1) (uniform distribution)

6: Calculate the probabilities bk and dk based on
p(k+1)
p(k)

and
p(k−1)
p(k) respectively

7: if u ≤ bk(i) then

8: Propose a new frequency randomly on [0, π) and

accept it with a probability of αB (birth move)

9: else if u ≤ bk(i) + dk(i) then

10: Remove an existing frequency randomly from ωk

and accept it with a probability of αD (death move)

11: else

12: Update for all k frequencies according to a pro-

posal distribution and accept it with a probability αU (up-

date move)

13: end if

14: Sample nuisance parameters ak and σ2
k

15: end for

16: Separate estimates based on k

17: Remove outliers from ak
18: Extract mean for ωk, ak and σ2

k

19: Reconstruct signal

Measurement Setup

•A modified ultrasound transducer (Sonos5500 Philips

Medical Systems) is used to acquire echo signals from

solid copper spheres (SCSs).

•The experimental setup consists of a water tank and tubing

that allows the drop of SCSs by gravity.

•The received response of a 6-cycle SCS signal, where the

transmit frequency is 1.62 MHz and the sampling frequency

is 20 MHz is shown below:
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Frequency Analysis
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 Bin width is set to 50kHz

•Histogram displaying the cumulative distribution of the

estimated frequency components from 5000 realizations.

•A 50 kHz bin width was used. Nine peaks can be clearly

distinguished while four of them may correspond to two

peaks merged to one.

Comparison with the FFT
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•Histogram showing number of identified frequency

components for the 5000 realizations of the rjMCMC

method.
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FFT of sphere signal
Bayesian spectral estimation

•Comparison of the FFT of the initial sphere signal with the

output of the parametric spectral estimation.

•The Bayesian method results in individual amplitude and

frequency values instead of a spectrum.

Conclusion

•The parametric spectral estimation

provides a reconstructed signal with

close resemblance to the echo signal.

•Minimum frequency separation is

improved by a factor of two compared to

FFT.

•The method may significantly improve

the sensitivity and the specificity of

existing diagnostic examinations.
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