Anti-cropping Blind Resynchronization for 3D Watermarking

Xavier Rolland-Nevière Gwenaël Doërr Pierre Alliez

Technicolor R&D France

Inria Sophia-Antipolis – Méditerranée

technicolor Security Laboratories

IEEE ICASSP 2015

- 2 3D Landmarks Creation
- Synchronization Patterns

Performances

Context

3D assets

- Routinely used in movies, video games, and scientific simulations
- Complex, valuable and copyrighted

Piracy threats

- 3D models/animations leakage
- 3D scanners/printers

Enduring challenges in 3D watermarking (for traitor tracing)

- Transforms for 3D mesh: correlated coefficients, causality issues
- Perceptual modeling: geometry vs. rendering fidelity, complexity
- 8 Resynchonization: robustness trade-off against cropping / noise addition
- Security: accessible watermark carriers

Radial-based 3D Watermarking

Baseline principle

Encode watermark information in the distribution of radial distances ρ_i between the center of mass **g** and the vertices v_i [Cho et al., 2007]

Embedding process

- Compute the radial distances ρ_i
- Compute the histogram hist(ρ) and the average μ_k of each bin
- Ompute a target average value μ_k ≤ τ_k to encode a bit m_k of the watermark payload
- Modify v_i position so that corresponding bin averages µ_k matches the target values

Reference implementation

• Quadratic programming framework [Rolland-Nevière et al., 2014]

0.8

Countermeasures

- Invariant watermark carrier
 Sensitivity to noise
- (Implicit) resynchronization
 Instability, content dependency
- Pilot sequences (?)

3D Landmark Vertices

Landmark definition

- **f**: vector field $\mathcal{M} \to \mathbb{R}^2$
 - Fitting parametric model of paraboloid to $\mathcal{N}_2(v)$
 - Oerive RST-resilient 2D vertex signature
- \mathcal{Q} : 2D quantization lattice
- $\mathbf{q}(v) \in \mathcal{Q}$: quantization point closest to $\mathbf{f}(v)$
- v is a landmark $\iff \|\mathbf{f}(v) \mathbf{q}(v)\| < \delta$

Landmark creation

Move vertices $v_i \in \mathcal{N}_2(v)$ in a local neighborhood to

- Minimize the squared error distortion
- While satisfying the *constraint*: $\|\mathbf{f}(v) \mathbf{q}(v)\| < \delta$

Non-interference: non-overlapping neighborhoods for multiple landmarks

Detection of Landmark Vertices

Blind retrieval

- Sast signature estimation for all vertices (4s for 35k vertices)
- **2** Detection problem: binary classification (threshold at δ)

Limitation: false positives due to the low dimension (2D) of the signature

Mitigation strategies

- Increase the dimensionality of the signature f(v)
 - Complex neighborhood modeling
 - Nested signatures $\mathcal{N}_2(v) \longrightarrow (\mathcal{N}_2(v), \mathcal{N}_3(v))$

 α : normalized δ w.r.t. Q

Center of Mass Recovery

Watermark embedding

- Create a pattern of landmarks to recover g
 - Select a non-overlapping set of vertices \mathcal{L} near a sphere $S(\mathbf{g}, r)$ (heuristics)
 - Project vertices of \mathcal{L} onto \mathcal{S}
 - Turn vertices of \mathcal{L} into landmarks
- Embed payload with radial 3D watermarking (add constraints to preserve landmarks)

Watermark extraction

- Recover the center of mass

 - Retrieve a set L̂ of candidate landmarks
 Compute an estimate ĝ_{L̂} ≡ g using robust sphere fitting (RANSAC)
- **2** Radial 3D watermark extraction using $\hat{\mathbf{g}}_{\hat{c}}$ (instead of $\hat{\mathbf{g}}$)

Low landmark/fitting scores \implies automatic resynchronization bypass

Full Resynchronization

Objective: transmit $(\mathbf{g}, \min(\rho), \max(\rho))$ to fully recover $\operatorname{hist}(\rho)$ **Proposal:** embed two synchronization patterns $\mathcal{S}_1(\mathbf{g}, r_1)$ and $\mathcal{S}_2(\mathbf{g}, r_2)$

Watermark embedder

- $\textbf{O} \ \ Define \ two \ sets \ of \ landmarks \ (\mathcal{L}_1,\mathcal{L}_2) \ using \ alternate \ quantizers, \ e.g. \ QIM$
- **2** Define (r_1, r_2) as preset linear combination of $(\min(\rho), \max(\rho))$

Vertex assignment: 90% payload vs. 10% resynchronization

Watermark decoder

- **9** Recover the geometrical parameters of both synchronization patterns
 - Isolate candidate landmarks for both quantizers used during embedding
 - Compute $\hat{\mathbf{g}}_{\hat{\mathcal{L}}}$ and \hat{r} after RANSAC sphere fitting for both sets of landmarks
- Radial 3D watermark extraction using ĝ_{L₁}, ĝ_{L₂}, r̂₁, r̂₂ (when confidence is sufficient)

Benchmarking Against Cropping

Remarks

- Resynchronization robust to combined rigid transform and cropping (in contrast with 'ground truth')
- Baselines with/without resynchronization equally robust against valumetric attacks, simplification, etc.

Wrapping Up

Conclusion

- New resynchronization paradigm illustrated with radial 3D watermarking
- Significant gain in robustness against cropping ... while preserving performances against standalone noise addition

Research outlook

- Robustness against combined cropping-noise attacks
- Investigate alternate models for local neighborhoods
- Security of landmark resynchronization (QIM attacks, geometric attacks)
- Sextension to other types of content, e.g. 2D landmarks for still images

Bibliography

Cho, J.-W., Prost, R., and Jung, H.-Y. (2007).

An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. *IEEE Transactions on Signal Processing*, 55(1):142–155.

Rolland-Nevière, X., Doërr, G., and Alliez, P. (2014).

Triangle surface mesh watermarking based on a constrained optimization framework. *IEEE Transactions on Information Forensics and Security*, 9(9):1491–1501.