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Abstract—This report presents the results to the challenge of
”Exploring Power Signatures for Location Forensics of Media
Recordings” as apart of Signal Processing Cup 2016 by IEEE
Signal Processing Society. Here we examine different frequency
estimation and classification techniques to provide accurate ENF
estimates and classify these signals into the corresponding grid
of recording. In this report we propose methods of efficient
extraction of ENF signal using quadratic interpolation and
frequency tracking.The SVM and GMM classifiers used provided
a classification accuracy of 80% on practice data set.The result
for testing dataset is also given.

I. INTRODUCTION

Electric Network Frequency (ENF) is the supply frequency
in power distribution grids. It has a nominal value of 60Hz
in North America and 50Hz in Europe, most of Africa, Asia
and Australia. The ENF fluctuates around its nominal value
because of load variations and defects in control mechanism
of the grid.The variation of supply frequency with respect to
time is called an ENF signal.

ENF signals are extracted directly from power recordings
obtained using a signal recorder which is fed with a stepped
down and voltage divided signal from power outlet. The
recorded signal is split into time frames of equal duration and
different frequency estimation techniques are used to estimate
the prominent frequency around the nominal ENF value.
Combining these instantaneous estimates gives an estimate of
the ENF signal. The ENF fluctuation are also present in audio
recordings made using devices in areas under the proximity
of an electrical activity [4]. This is due to electromagnetic
influences at the place of recording. It has been shown that
the ENF variations extracted from the same power grid are
similar which can be used to uniquely to identify the grid
from others[1].

ENF signal based analysis has paved way for multiple
forensic applications [9]. It has been shown that the ENF can
be used to detect tampering or modification in a multimedia
signal. Estimation and validation of time of recording and also
its location across the grids are popular application of ENF
signal. However, such application requires a vast database of
synchronous power signal with the knowledge of grid of origin
which is used as reference.

In the report we explain in detail the ENF extraction
analysis and classification strategy followed to identify the
grid of recording. Different methods for extracting the ENF
signal from power or audio are presented in [5,13,15].Given
a database of such recordings corresponding to certain power

grids, different approaches for classifying them are described
in[17][18].We studied various ENF extraction techniques and
some of the techniques we used to solve the challenge are
briefly described in the following section of this report.We also
propose a modified frequency tracking approach by defining
a new cost function.

The remaining part of the report is organised as follows.
Section II briefly describes the theory behind the different
methods used for extracting ENF signal from the recordings
along with a proposed Frequency Tracking Algorithm. Section
III presents the classification system used and the proposed
features to describe the extracted ENF signals. Section IV
discusses the experiments done on the practice and test dataset.
Section V examines the circuit design used for recording a
power signal and analysis of ENF extracted from the recording
of the current location with that the 9 grids provided and
Section VI concludes the report.

II. EXTRACTION OF ENF SIGNALS

The ENF extraction techniques that we studied and imple-
mented as part of the SPCUP 2016 are :
A.Short Time Fourier Transform
B.Quadratic Interpolation
C.Improved DFT Approach
D.Frequency Tracking Method
E.Proposed Modified Frequency Tracking and
F.Estimation of Signal Parameters via Rotational Invariance
Technique(ESPRIT).

We now present a brief description of the above techniques.

A. Short Time Fourier Transform

A basic approach for extracting ENF would be to make use
of the Short Time Fourier Transform. This approach utilizes
the distribution of power among various frequencies in small
time durations, here after mentioned as a ”time frame”. The
signal is assumed to be stationary in each individual time
frame. For each time frame, the Discrete Fourier transform
(DFT) of the signal is computed and the frequency bin with
maximum power component is chosen as the estimate of the
ENF for that single time frame.

In order to get a good estimate of frequency ( i.e better
frequency resolution), one would have to take as many
samples of the signal as possible which in turn would limit
the time resolution, which is determined by the duration of



time for which we assume the signal to be stationary. Thus a
frame size has to be fixed considering the trade off between
time resolution and the frequency resolution, a difficult task in
practical scenarios. To overcome this limitation, adjacent time
frames over which the ENF is estimated is made to overlap
with each other, thereby reducing the time for which the
signals is assumed to be stationary. Overlapping may sound
perfect at first but it unnecessarily increases computation
overhead. Even with overlapping, the short time Fourier
transform approach still lags in terms of performance in low
SNR signal estimation.

B. Quadratic interpolation at maximum power

This is similar to the STFT based technique but uses a
quadratic interpolation to increase the frequency accuracy.
In this, the signal is split to blocks of length N with 50%
overlap and the power spectrum of the blocks is computed.
For each block, the frequency bin bmax corresponding to
the maximum power is noted and a quadratic model to the
frequencies at bmax − 1, bmax and bmax + 1 is fitted. As
described in [5], we compute the value of parabola peak p as:

p = 0.5× (y(bmax − 1)− y(bmax + 1))

(y(bmax − 1)− 2y(bmax) + y(bmax + 1))
(1)

where,
y(b) = 20log10(PSD(b))

and PSD(b) represents Power Spectral Density at frequency
b. The ENF of the block is then given by:

FENF =

(
bmax + p

N

)
Fs (2)

where Fs is the sampling frequency of the signal.
A detailed description of this method can be found in [5].

C. Improved DFT Approach

In this method [15], a better approximation of the Discrete
Time Fourier Tranform (DTFT) of each N length block is
achieved by increasing the number of FFT points from N to a
very high value (∼ 1000N ). As explained in the STFT based
method, the ENF is assumed to be the frequency at which
the amplitude of the FFT is maximum. Due to the discrete
approximation of the DTFT by the FFT, the ENF estimated
by this method can be different from the actual value. This
is the rationale behind increasing the number of FFT points
which will help to better approximate the DTFT of the block.

It is impractical to compute such high point FFT for each
block. Instead, initially the N point FFT of the block is
computed to determine the frequency FENF corresponding to
the maximum amplitude. With this value of FENF , Fourier
transform for a small part of the spectrum centered around
FENF is only computed. The idea is to estimate power in the
region between the bins adjacent to the FENF bin by using

the appropriate set of basis functions which are generated
from the kernel of a high resolution DFT. The given signal
for which the spectrum is to be recomputed is projected
onto the higher resolution bases and square of this projection
value is taken as the power distributed in that frequency bin.
Once the spectrum component is estimated, a binary search
is performed for estimating the local maxima in the spectral
distribution.

The search is done until the middle bin is found to have a
higher power density than the adjacent bins. This limits the
search to a local maxima (we only expect one maxima).

D. Frequency Tracking Method

Common non parametric approaches like quadratic
interpolation at maximum power and the short time Fourier
transform described above take into account only those
frequencies that contribute maximum to the spectral power
and therefore tend to be inaccurate at low SNR levels. In this
scenario, the signal of interest should be characterized by
using properties other than the maximum power parameter.
Following this line of thought, it has been proposed in [13]
that the property of low variance of ENF signal over time
be used to distinguish it from noise. The method aims to
minimize the squared difference of frequency estimates over
adjacent time frames, thereby obtaining a local minimum for
the overall ENF signal variance. The algorithm[13] minimizes
the following cost function to obtain the minimum variance
ENF estimate

J(j, fj) =

R∑
r=j+1

(fr − fr−1)2, fj ∈ λj (3)

where fj and λj are the frequency estimate and the set of
frequency bins respectively in the jth time frame.

The approach of iteratively fixing the optimum value of
λj is computationally inefficient. Therefore, we choose a
predetermined, static number of bins for each time frame and
propose a new cost function that also accounts for the power
in the frequency bin in addition to the frequency jump from
the previous bin.

E. Proposed Modified Frequency tracking

An optimum solution to the estimation problem can be
obtained by maximising the power contained in the signal
and simultaneously minimising the overall variance of the
estimated signal.

To obtain the optimum solution, we propose the following
cost function

J(fj) = ‖fj − f̄‖2 + k(1 − P (fj)), fj ∈ λj (4)



f̄ = mean(f1, f2, · · · , fj−1) (5)

where P (fj) is the power in the jth frequency bin of the
Rth frame, given by

P (fj) =
IR(fj)

max
r∈λR

IR(fr)
(6)

and k is the weight penalising the power content in the signal
(or more precisely, the absence of it).

In order to find a global minimum for this cost function,
‘λ’ frequencies at which the power spectrum peaks is found
out for each time frame and the cost function is computed for
each frequency jump to adjacent frame. Forward and backward
costs are computed and for the backward jump from the
first frame, cost is assumed to be infinite. The path which
minimises the cost function in the forward path is chosen if
the cost is below a pre-adjusted threshold, if not, the backward
path is chosen until all frequency peaks for the previous frame
has been tried out. In such a situation, the threshold is reduced
and the whole process repeated. If not, the algorithm picks off
from the new estimate and repeats the entire process.

The algorithm employed, popularly known as the Fano
Algorithm[19], flow chart of which is given in Figure 1,is
used for decoding convolution codes and is cherished for its
low memory requirement and lenient computational overhead.

F. Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT)

The parametric subspace based approach for frequency
estimation is more precise because it makes prior assumption
of the signal to be estimated. ESPRIT[12] is the most widely
used parametric frequency estimation method based on the
subspace analysis of a signal and noise model. In general,
these methods can be used to estimate the frequency of a signal
composed of P complex exponential embedded in white noise
Wn.

xn =

P∑
i=1

Aie
jnωi +Wn (7)

where Ai refers to amplitudes of the sinusoids with frequen-
cies wi. As ENF signals consist of only one real sinusoid,
the value of P for ENF signals is 2. ESPRIT makes use
of the rotational property between staggered subspaces that
is invoked to produce the frequency estimates. In our case,
this property relies on observations of the signal over two
intervals of the same length staggered in time. The sample

Fig. 1: Flowchart of Fano algorithm.

correlation matrix X from data is computed which is Singular
Value Decomposed as

X = LSUH (8)

Where L is an N × N matrix of the left singular vectors, S
is an N×M matrix with its main diagonal entries containing
the singular values, and U is an M × M matrix of the right
singular vectors. The singular values correspond to the square
roots of the eigenvalues of the sample correlation matrix X
scaled by length of data matrix N , and the columns of U
are the eigenvectors of X. These vectors form an orthonormal
basis for the underlying M-dimensional vector space. More
specifically, U can be written as U =[US |UN ], where US is
the M×P matrix of right singular vectors corresponding to the
singular values with the P largest magnitudes and UN is the
M × (M − P) matrix containing the remaining right singular
vector. The signal subspace can be partitioned into two smaller
(M - 1) dimensional subspaces as:

US =

[
U1

∗

]
=

[
∗
U2

]
(9)

Where U1and U2 correspond to the unstaggered and stag-
gered subspaces, respectively. The Relation between U1and
U2 can written as: U2=U1Q Where Q is a P× P matrix. Q



can be computed using least squares method. Eigen analysis
can then be carried out on Q. The frequency estimates can be
extracted from the arguments of the eigenvalue values of Q
by φk for 1 ≤ k ≤ P , the frequency estimates are given by

f̂k =
6 φk
2π

with 1 ≤ k ≤ P (10)

A detailed description of the algorithm can be found in [13].

III. MULTI CLASS CLASSIFICATION

Once the of ENF signals are extracted from the given
collection of power and audio recordings of different grids,
our next task is to classify them into appropriate grids. To this
end, first we extract some distinguishing and non-redundant
features from the ENF data followed by training a multi-class
classifier with these features.

A. Feature Extraction and Analysis

To maximize the number of training samples, feature ex-
traction was done on sub blocks of the estimated ENF signal.
In addition to the 16 length feature vector used in [11], we
propose a set of 6 additional features for better classification.
Our 22 feature set can be used to improve classification.

Mean, variance and higher order moments are important
statistical parameters and therefore taken as features.

The Wavelet transform, which represents a signal as a
projection onto basis vectors with varying time-frequency
resolutions, can be used as a very good descriptor of the signal.
Wavelet decomposition of a signal generates detail and approx-
imation coefficients. The approximation coefficients represent
the relatively invariant component of the signal across time
frames. The detail coefficients represent the quick variation of
the ENF signal in subsequent time frames. The variance of
these coefficients at each level accurately describes the signal.

The signal is modelled using a M level auto regressive
function to represent the correlation among adjacent samples.
The innovation signal v[n] is a measure of the convergence of
the model.We use an AR(5) model given by

s[n] = a1s[n− 1] + a2s[n− 2] · · ·+ a5s[n− 5] + v[n] (11)

TABLE I: Feature Components

Index Features
1 Mean of ENF segment.
2 log(variance) of ENF segment.
3 log(range) of ENF segment.
4 log(variance) of approximation after L-level wavelet analysis

(L=9)
5-13 log(variance) of nine levels of detail signal computed through

L-Level wavelet analysis from coarser to finer(L=9).
14-17 AR(5) model parameters α2,α3,α4 and α5 .

18 log(variance) of the innovation signal after AR(5) modelling.
19 Variance of power spectral density

20-21 Higher order moment 3 and 4
22 Variance of cross-correlation between adjacent time frames

The coefficients are normalised by dividing each with the
first coefficient a1. The four normalised AR coefficients result-
ing from modelling a2, a3, a4 and a5 and the variance of the
model’s innovation signal v[n] are considered as features from
the AR model.These features have the potential to distinguish
ENF signals in terms of how well they can fit such an auto-
regressive model and in what manner.

Proposed New Features: We find the power spectral density
of the ENF signal and find the variance of this frequency
domain signal and used as an additional feature . This measure
captures the variation of the ENF signal in the frequency
domain.

A slowly varying ENF signal would be highly correlated
with itself and would show lower variation between adjacent
samples. Therefore variation of cross-correlation between ad-
jacent time frames is also used as a feature.Thus we propose
6 additional features compared to [11] which are variance
of power spectral density, variance of cross-correlation and
third and fourth higher order moments and the two additional
coefficients for the AR(5) model . The feature components that
we use for location classification are summarized in TABLE
I.

We take log of the range and variance feature values to
emphasis on their orders of magnitude and potentially enhance
the separability between the final feature values. Normalization
is done to increase the separation and distinguish each grid
from each other.The computed feature values are normalized
to the range of [-100, 100] by a linear scaling, whereby the kth

feature value in a training example is normalized according to
the other feature values in position k in all training examples.
The normalization parameters are stored and later applied
to the testing examples to normalize them. We follow the
normalization procedures as in [2,11].

B. SVM Classifier

SVM is basically a two-class classifier based on the
idea of large margin and mapping data into a higher
dimensional space. The principle of a SVM is to construct
a hyperplane or a set of hyperplanes in a high or infinite
dimensional space, which can be used for classification so
that a good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data point of any
class. In general, the larger the margin, the better the classifier.

When the feature space is not linearly separable, SVM
maps the data into high dimensional feature space with
non-linear mapping, and finds the optimal classification
hyperplane in the high dimensional feature space.

After extracting features from a raw ENF signal . We trained
the system using the one vs one approach which uses a group
of binary classifiers. The SVM implementation produces mC2

binary classifiers for M classes. Each binary classifiers are
trained on one of the possible pairs from the M grids, which
learns to distinguish between the respective two grids. During
the testing of a trained classifier system, we give each test



vector through each binary classifiers. Based on the results
from the binary classifiers, LIBSVM assigns scores to each
grid. The final answer is the grid with the largest value of
score. LIBSVM also gives probability estimates which is a
measure of its proximity to the cluster corresponding to that
grid[11].

There is a mismatch in the number of recordings from
different grids. If a system is trained on a dataset where the
majority of the training examples belong to one class, it tends
to be more biased to the class with highest number of training
samples. To overcome this issue, we use a variant of SVM
called the weighted SVM, which is supported by LIBSVM.
The weighted SVM addresses the issue of imbalanced data
through assigning different cost values for examples from
different classes. The larger class has a smaller cost value than
the smaller class, which means that the penalty for making a
mistake on an example from the smaller class would be larger.
Here, with M classes, the cost for class j that has NJ training
examples would be wj · C where

wj =
Nmin
Nj

for j = 1, 2, 3 · · · ,M and Nmin = minNj

(12)
In our implementations, we use the linear Function kernel

for our SVMs. Using the LIBSVM library for the linear
kernel, the cost parameter C can be controlled which relates
to how far the influence of a single training example reaches.
For each SVM classifier we train, we select the value for C
through cross-validation. The parameter C is a compromise
between the minimum distance from the separating hyperplane
and the number of outliers possible in the model

IV. EXPERIMENTAL RESULTS

We now present the details of the experiments performed
on the practise dataset. Based on these experimentations we
select the best ENF extraction technique and also develop
an optimum classification strategy and these optimum ENF
extraction- classification scheme is applied to the test data set
and report our final result.

A. Training data

The training dataset provided, consisted of a total of 111
signals of varying durations of 30 minutes to 90 minutes,
collected from 9 different grids, of which 93 were power
recordings and 18 were audio recordings. All these recordings
were either sampled at or down sampled to (after low pass
filtering using proper anti-aliasing filters) 1000Hz. The
practice dataset and the testing dataset provided consisted of
50 and 100 signals respectively, each of 10 minutes duration,
sampled at 1000Hz.These were not labelled as audio or
power recordings and could have been recorded from one of
the above mentioned 9 power grids or may not be from any
of these grids. The spectrogram of a typical power signal is
shown Figure 2.

Fig. 2: Spectogram of 60 Hz Power signal
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Fig. 3: Power spectrum of 100 Hz Power signal

B. Pre-processing

As the nominal value of ENF is either 60/50Hz, we down-
sampled the signals to 500Hz, reducing computational com-
plexity, without any loss of information. We chose 500Hz to
make possible ENF extraction at one of its higher harmonics if
needed. To determine the nominal value of enf, we computed
the power at the fundamental frequncies (50 and 60 Hz) and
their next three harmonics and compared the sum of powers .

Since the ENF signal is only present in a narrow frequency
band centered at its nominal frequency, we applied a band
pass filter centred at the nominal ENF frequency (or one of
its harmonics) with a bandwidth of 3Hz.

C. ENF extraction

When we analysed the power spectral density plots of the
power and audio recordings, we found that the ENF signal
had maximum strength at 50/60 Hz for most of the signals,
but for some recordings it was observed that the strength of
the ENF was higher in one of its harmonics. A recording for
which this is true is shown in Figure 3. This prompted us to
extract ENF at the harmonic where its power is maximum.
Therefore, for the signal in Figure 3, ENF would be extracted
from the second harmonic (100Hz).



We implemented the six ENF extraction methods described
in section II. The specifics and results for each are presented
below.The results are presented in the increasing order of
accuracy during classification :

1) STFT: In this extraction technique, we divided the
bandpass filtered signal into overlapping blocks of size 1024
with overlap factor 50%. After this we computed the 1000
point FFT of each block. ENF frequency in each block is the
frequency corresponding to the global maxima of its FFT.

Figure 4 shows a plot of ENF extracted using this method.
We compared the ENF extracted by this method to typical ENF
plots and found it to be severly handicapped in estimating the
ENF. The main problem was frequency resolution. The ENF
extracted by this method jumped between different values after
small time intervals.
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Fig. 4: ENF extracted from power signal using STFT.

2) Improved DFT aproach: For this method, we compute
the 1024 point DFT for the signals at fundamental frequency
and then improve the resolution further as described in section
II C. The result of improved DFT method of ENF extraction
is given in Figure 5. We found the improved DFT approach
to give high resolution ENF estimates but it suffered from
intermittent spikes.
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Fig. 5: ENF extracted using Improved DFT method.

3) ESPIRIT: Here we split the signal into blocks of 1
second duration with 50% overlap. We applied the ESPIRIT
algorithm (with paramters in section II) to each block which
gave us the ENF frequency in it.

The ENF extracted is shown in Figure 6. This method
had high computation time though it gave high resolution
estimates.
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Fig. 6: ENF extracted from power signal using ESPRIT.

4) Quadratic Interpolation at maximum power: In this, the
signal was split into blocks of 512 length each with 50%
overlap. The frequency corresponding to maximum power and
its adjacent frequencies were determined .

The result of ENF extraction by this method is shown in
Figure 7. This method seemed to give relatively good estimates
of ENF but we observed an offset of 1Hz or so from the
nominal ENF frequency in some cases.

5) Frequency Tracking: The frequency tracking algorithm
was applied on time frames consisting of 1024 samples, from
which 5 frequency bins at which the power peaked and the
corresponding power content were stored. After storing these
values for the entire time frame, ENF signal was chosen as
that spectrum component which minimised the cost function
(3). A plot of ENF extracted by this method is shown in Figure
8.
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Fig. 8: ENF extracted from power signal using Proposed
Modified Frequency Tracking.
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Fig. 7: ENF extracted from power signal using Quadratic
Interpolation.



6) Proposed Modified Frequency Tracking: Here we show
the results of the proposed computationally efficient modified
frequency tracking approach.The new cost function function
reduced the computational time for extracting the same ENF
signal by 30%.

Occasional spikes were observed in some cases. We re-
placed these by the average of the previous two values. This
method proved to be more robust in estimating ENF signal in
the presence of noise as evident from the correlation coefficient
comparison as shown in Table II.

TABLE II: Correlation Coefficients of Algorithms

SNR(dB) Quadratic Proposed Frequency ESPIRIT
Intepolation Tracking

10 0.5332 0.7242 0.9528
15 0.7284 0.8818 0.9668
20 0.8879 0.9575 0.9658
25 0.9593 0.9860 0.9880
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Fig. 9: ENF extracted from power signal using Frequency
tracking.

D. Classification

We generated five different SVM models using the features
extracted from the ENF estimated by different techniques as
above. The various features we tried are shown in Table I.
For judging how good a feature is, we plotted a series of
histograms depicting the variation of features within a class
and between two classes as shown in Figures 10 and 11.

After trying various combination of features for each model,
we found that there is an optimum set of features which
gives maximum classification accuracy on the practice dataset.
This set of features varied across each extraction method. The
result of accuracy obtained on the practice data set for each
extraction method with the optimum set of features found for
it is tabulated in Table III. The proposed modified frequency
tracking approach and quadratic interpolation methods gave
the highest accuracy with the features 1-22 and 1-16 (Table I)
respectively.

Since both these methods used very different set of features
and the signals misclassified them appeared to be different, we
had the idea of combining these two models in some manner.

The approach we took to combine the two models was to
add the weighted probability matrix output by the SVM for
each model, and then find the class which had the maximum
probability. For the probability matrix generated by each

model, we took the inverse of the variance of the probabilities
of a signal belonging to each grid predicted by the model as
its weight.

Using this method, we got an improvement of 6% in
accuracy making our final prediction accuracy as 72%.

TABLE III: Accuracy of Classification Models

Sl.No. Extraction Method Classification Accuracy
Obtained

1. STFT based method 34%
2. Improved DFT 32%
3. Quadratic interpolation 66%
4. Frequency tracking 68%
5. ESPRIT 64%
6. 3 and 4 combined 72%
7. 3 and 4 combined with GMM 80%
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Fig. 10: Within and between class variation of Zero Crossing
Feature.
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Fig. 11: Within and between class variation of Mean.

A major difficulty in our classification we faced was to
correctly classify the signals that didn’t belong to any of the
classes in our training set. We tried several approaches in this
regard. The most trivial method was to threshold the maximum
probability at some value. If the highest probability output by
the SVM for a signal is less than this value we would classify
it as not belonging to any of the classes. However, we found
that such a threshold could not be chosen. Any reasonable



threshold misclassified several signals as belonging to ’Not
any Class’.

E. Other Experimentations

1.It was inferred, insufficient number of samples of audio
recordings from each grid given to us could mean a larger mis-
classification probability for audio recordings. To overcome
this, synthetic white noise was added to clean power signal to
model the noisy nature of the ENF signals from audio record-
ings.[ref] Now separate models were trained using the clean
and the noise added ENF signals. Their class probabilities
were combined as above. By this approach the classification
accuracy decreased by 8% for the practice signals.

2.From the probability estimates for each class given by
SVM, we could say that about 12% of the signals could have
been classified correctly, had the class with second highest
probability chosen. For this we implemented a binary SVM
between the classes with the two highest probability estimates
using a reduced number of features that best discriminate
the two classes. We had difficulties in deciding the most
discriminating set of features for every pair of classes. Initially
we used those features whose absolute difference of mean
values for the two classes was highest. Another approach was
to select those features whose variance was least in each class.
The accuracy achieved using both were similar but less than
the original model.

3.We took five random power signals from each grid and
added a small fraction of a signal taken randomly from a
different grid of the same nominal ENF frequency. Thus we
generated five extra signals for each grid. Our intention was
to make the classifier more robust to misclassification. But the
accuracy dropped by 4% after this method.

F. Results

After combining the models based on Frequency Tracking
and Quadratic Interpolation methods, and using GMM to
identify the signals not belonging to any class, we got an
accuracy of 80% on the practice dataset. The classification
result obtained by our final model on the two datasets are
given below:

1) Practice Dataset Result: :
AHCFD,DEIND,AFDDC,INNAE,DBBID,

CDFGB,DHCHG, ECIHI,EHECF,FNGEI

2) Testing Dataset Result: :
NDDCD,FFEAF,CIGBG,DFCEH,HHHDD,

NIDAI,DNGHI,IDCBG,ENIBG,FGIAD,
CIAID,HAEEC,IHDDG,CECBI,EICDI,
BDBDB,DINAG,IABIH,IIDEA,GBFDD

V. CIRCUIT DESIGN AND DATA ANALYSIS FOR ENF
ACQUISITION

In this section we explain the details of the power record-
ing device at our location.We have developed a simple and

inexpensive but efficient technique for obtaining the power
recordings.

A. About the circuit

First we step-down the supply voltage and then attenuate the
same to a the voltage level compatible for the following section
of the circuit, Analog to Digital Converter(ADC) . The range
of voltage for measuring capable by the ADC is also noted. In
our circuit design, a 6-0-6 Volt 500mA Transformer is used.
The stepped down voltage has a maximum voltage of 9V
which is brought down to a 2.25V through a voltage dividier
circuit with high value resistors (150k Ohm and 450k Ohm) to
limit the current and thus reduce the power dissipation. Figure
12,13,14 shows schematic diagram of circuit,photograph of the
circuit and TRRS interfacing with a computer.

Fig. 12: Schematic Diagram of Circuit.

Fig. 13: Circuit used for recording.



Fig. 14: 3.5 mm TRRS jack.

Depending on the sampling rate of the ADC, an anti aliasing
filter should also be placed in the circuit along with a fuse
for safety purposes. For an ADC we us the inbuilt sigma-
delta ADC from the sound card on the computer. The Sigma
Delta converters in the sound card which provide inherent anti-
aliasing protection. Since the signal of interest has such a low
frequency, the sampling rate can be correspondingly low. Here
we take sampling rate of 1000Hz and record using Audacity
Software as shown in Figure 15.

Fig. 15: Audacity software.

B. Sigma-Delta ADC

Sigma-delta A/D converter consists of an oversampling
modulator, followed by a digital filter and a decimator. The
modulator output swings between two states (high and low),
and the average output is proportional to the magnitude of
the input signal. Since the modulator output always swings
full-scale (1 bit), it will have large quantization errors. The
modulator, however, is constructed so as to confine most of
the quantization noise to the portion of the spectrum beyond
500Hz.

Fig. 16: Schematic diagram of Sigma-Delta ADC.

Fig. 17: Output of modulator.

As shown in Figure 17, the ENF signal spectrum at a ranges
from 0 to 500Hz and 43.6 KHz to 44.1 KHz l, while the
quantization noise is at a region between them, where 44.1
KHz is the sampling rate of the modulator.

The digital filter is an n-tap FIR filter and takes the high-
speed low-resolution (1-bit) modulator output and performs a
weighted average of n modulator outputs in a manner dictated
by the desired filter characteristics. The output of the filter
is a high-resolution word, which becomes the A/D output.
The digital filter is designed to filter out between 500Hz
and 43.6kHz. Cleaning out all the noise in between 500Hz
and 43.6kHz makes it possible to reduce the sampling rate
to values between 1KHz to 44.1KHz without causing any
aliasing.

Fig. 18: Output of modulaor after digital filter(top) and deci-
mator(bottom).

The upper figure 18 shows the output of the modulator after
digital filtering but prior to decimation. The lower figure shows



the spectral output after decimation-the final A/D output.The
more detailed description can be found in [20]

C. Analysis of recorded power signals

Using the above setup, we obtained power recording for a
duration of 10hrs. To get an overall idea about the variation in
ENF with time and load, the signal was recorded at different
times from varying locations. The PSD plot of the power
recording, shown in the Figure 19, clearly depicts that power
exists at the nominal frequency of 50 Hz as well as its
harmonics.

We used Quadratic interpolation and Frequency tracking to
estimate the ENF signal from the recording and tested the
extracted signals on the classifier we developed, the results
obtained are tabulated. The signal was judged by the GMM
as not belonging to any of the above classes.Table III shows a
brief analysis of the recorded Power Signal and how it varies
through out a day.
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Fig. 19: ENF extracted from our recorded power during early
hours using Quadratic Interpolation
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Fig. 20: ENF extracted from our recorded power at noon using
Frequency Tracking Algorithm.
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Fig. 21: Power spectral density of our power recording(1-4).

TABLE IV: Analysis of Extracted Signal

Time Mean Variance range Noise Variance
of AR(5)

Morning 50.09 6.1× 10−4 0.13 1.87× 10−4

Noon 49.97 0.0029 0.26 2.9× 10−4

Mid-night 50.01 0.0015 0.19 2.13× 10−4

VI. CONCLUSION

This report described the various techniques we imple-
mented for extracting ENF signal from power as well as
audio recordings .The ENF can be classified without having
the power or audio references. We used the SVM classifier
for classifying the extracted ENF signals. We report a clas-
sification accuracy of 80% as verified by the link provided
by organising team SP CUP. We have presented the results
obtained on the test data set. We also presented the details of
the hardware used for power recordings at our location .
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