
Feature Adapted Convolutional Neural Networks for
Downbeat Tracking

Simon DURAND1, Juan Pablo BELLO2, Bertrand DAVID1, Gaël RICHARD1

1LTCI, CNRS, Télécom Paristech, Université Paris-Saclay, France
2Music and Audio Research Laboratory - New York University, USA

simon.durand@telecom-paristech.fr

Introduction
What is our aim?

• Recover downbeat time instants from music audio signals.

What is a downbeat?

• Bar boundaries.
• First beat of a bar.

It is useful for:
• Automatic sheet-music transcription.
• Genre, chord or structure recognition.

General system overview:
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Focus of this work:
• To design adapted convolutional neural network (CNN) archi-
tecture to each feature characteristic.

1) Harmonic Network (HCNN)
• Highlight instantaneous harmonic change around downbeats.
→ Use small filter receptive fields and input temporal dimension.
• A song transposition shouldn’t change our downbeat perception.
→ Implement circular shifting data augmentation.
• Visualization of the harmonic network:

2) Melodic network (MCNN)
• Melody contour plays a role in perceiving rhythm hierarchies, but it
is difficult to derive high level heuristics.
→ Design a low-level representation of melodic contour based on the
constant-Q transform and a salience function
→ Use large filter receptive fields to find a melodic pattern as a first
layer.
• Melody contour is pitch invariant.
→ Perform max pooling on the whole frequency range of this layer out-
put to keep the most salient melodic pattern.

3) Rhythmic network (RCNN)
• Highlight bar-long pattern.
→ Use large filter receptive fields and input temporal dimension.
• Can encode the length of the bar.
→ Output different labels for different bar length and downbeat posi-
tions.
• Visualization of the rhythmic network:

4) Results
• Evaluation metric: F-measure based on the standard Precision and
Recall. Tolerance window of 70ms.
• Datasets: Nine datasets of various (mainly) western musical styles.
• Leave-one-dataset-out approach.
• Tests:
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→ Each network adds value.

• Comparison to 3 other reference methods, [Davies et al. 2006], [Peeters
et al. 2011], [Papadopoulos et al. 2011] and to our previous work,
[Durand et al. 2015].

Best of the 3 references
Previous work
Previous work + 3 networks
3 new networks alone

Main ideas and conclusion
•Use melody, rhythm and harmony to characterize downbeats.
• Take advantage of the high level and continuous aspect of
downbeats with convolutional neural networks.
• Adapt the network architecture to each feature.
• Significantly outperforms the previous state of the art.


