Feature Adapted Convolutional Neural Networks for
Downbeat Tracking

Simon DURAND!, Juan Pablo BELLO?, Bertrand DAVID!, Gaél RICHARD!
LLTCI, CNRS, Télécom Paristech, Université Paris-Saclay, France
*Music and Audio Research Laboratory - New York University, USA

Signal and Information Processing : The Heartbeat of a Smart Society

TELECOM

Parislech

simon.durand@telecom-paristech.fr

3) Rhythmic network (RCNN)

e Highlight bar-long pattern.

— Use large filter receptive fields and input temporal dimension.

e Can encode the length of the bar.

— Output different labels for different bar length and downbeat posi-
tions.

e Visualization of the rhythmic network:

Introduction

What 1s our aim?

e Recover downbeat time instants from music audio signals.

What is a downbeat?

e Bar boundaries.
e First beat of a bar.
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It is useful for:
e Automatic sheet-music transcription.
e Genre, chord or structure recognition.
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General system overview:
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Focus of this work

e To design adapted convolutional neural network (CNN) archi-
tecture to each feature characteristic.
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1) Harmonic Network (HCNN)

e Highlight instantaneous harmonic change around downbeats.

— Use small filter receptive fields and input temporal dimension.
e A song transposition shouldn’t change our downbeat perception.
— Implement circular shifting data augmentation.

e Visualization of the harmonic network:
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4) Results

e Fvaluation metric: F-measure based on the standard Precision and
Recall. Tolerance window of 70ms.

e Datasets: Nine datasets of various (mainly) western musical styles.

e Leave-one-dataset-out approach.

o Jests:
(1) RCNN added

(2) RCNN vs old rhythm network

(3) RCNN multi-label vs RCNN no multi label
(4) HCNN added

(5) HCNN vs old harmonic network
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(6) HCNN vs old harmonic and old harmonic
similarity network

7) MCNN added
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— Each network adds value.

e Comparison to 3 other reference methods, |Davies et al. 2006|, |Peeters

et al. 2011|, |Papadopoulos et al. 2011| and to our previous work,
|[Durand et al. 2015].
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2) Melodic network (MCNN)

e Melody contour plays a role in perceiving rhythm hierarchies, but it
is difficult to derive high level heuristics.

— Design a low-level representation of melodic contour based on the
constant-() transform and a salience function

Main ideas and conclusion

— Use large filter receptive fields to find a melodic pattern as a first
layer.

e Melody contour is pitch invariant.

— Perform max pooling on the whole frequency range of this layer out-
put to keep the most salient melodic pattern.

e Use melody, rhythm and harmony to characterize downbeats.
e Take advantage of the high level and continuous aspect of
downbeats with convolutional neural networks.

e Adapt the network architecture to each feature.

e Significantly outperforms the previous state of the art.




