Feature Adapted Convolutional Neural Networks for Downbeat Tracking
Simon DURAND¹, Juan Pablo BELLO², Bertrand DAVID¹, Gaël RICHARD¹
¹LTCI, CNRS, Télécom Paristech, Université Paris-Saclay, France
²Music and Audio Research Laboratory - New York University, USA
simon.durand@telecom-paristech.fr

Introduction

What is our aim?
• Recover downbeat time instants from music audio signals.

What is a downbeat?
• Bar boundaries.
• First beat of a bar.

It is useful for:
• Automatic sheet-music transcription.
• Genre, chord or structure recognition.

General system overview:

Focus of this work:
• To design adapted convolutional neural network (CNN) architecture to each feature characteristic.

1) Harmonic Network (HCNN)
• Highlight instantaneous harmonic change around downbeats.
 → Use small filter receptive fields and input temporal dimension.
• A song transposition shouldn’t change our downbeat perception.
 → Implement circular shifting data augmentation.
• Visualization of the harmonic network:

2) Melodic network (MCNN)
• Melody contour plays a role in perceiving rhythm hierarchies, but it is difficult to derive high level heuristics.
 → Design a low-level representation of melodic contour based on the constant-Q transform and a salience function
 → Use large filter receptive fields to find a melodic pattern as a first layer.
• Melody contour is pitch invariant.
 → Perform max pooling on the whole frequency range of this layer output to keep the most salient melodic pattern.

3) Rhythmic network (RCNN)
• Highlight bar-long pattern.
 → Use large filter receptive fields and input temporal dimension.
 → Can encode the length of the bar.
 → Output different labels for different bar length and downbeat positions.
• Visualization of the rhythmic network:

4) Results
• Evaluation metric: F-measure based on the standard Precision and Recall. Tolerance window of 70ms.
• Datasets: Nine datasets of various (mainly) western musical styles.
• Leave-one-dataset-out approach.
• Tests:
 1) RHCNN added
 2) RHCNN vs old harmonic network
 3) RHCNN multi-label vs RHCNN no multi label
 4) HHNN added
 5) HHCNN vs old harmonic network
 6) HHCNN vs old harmonic and old harmonic similarity network
 7) MHCNN added
 8) MHCNN + HHCNN vs 2HCNN
 → Each network adds value.
• Comparison to 3 other reference methods, [Davies et al. 2006], [Peeters et al. 2011], [Papadopoulos et al. 2011] and to our previous work, [Durand et al. 2015].

Main ideas and conclusion
• Use melody, rhythm and harmony to characterize downbeats.
• Take advantage of the high level and continuous aspect of downbeats with convolutional neural networks.
• Adapt the network architecture to each feature.
• Significantly outperforms the previous state of the art.