Information Point Set Registration for Shape Recognition
Zheng Cao¹, Jose C. Principe¹, Bing Ouyang²
¹Department of Electrical and Computer Engineering, University of Florida
²Harbor Branch Oceanographic Institute, Florida Atlantic University

Introduction
- This paper proposes a way of enhancing shape recognition through point set registration.
- Point correspondences between two shapes are obtained by the flip invariant shape context. Then, the query shape \(Y \) is registered to the template shape \(X \) using information theoretical learning (ITL) techniques.

Flip Invariant Shape Context
- Shape context (SC) is a well-known descriptor for point sets. Any 2-D point is described by a histogram \(h \) binned in distances and angles relative to other points.
- Point correspondences are then found by calculating the matching cost of any two points \(x_i \) and \(y_j \):

\[
C(x_i, y_j) = \sum_{k=1}^{N} \frac{(h_k(x_i) - h_k(y_j))^2}{h_k(x_i) + h_k(y_j)}
\]

(1)

and minimizing the overall cost using Hungarian algorithm.
- SC suffers from not being flip invariant, as well as the ambiguity of the direction of the tangent line. This renders a total of 4 conditions for SC.

Affine and Non-rigid Transformation
- With correspondences available, affine registration becomes a well-defined optimization problem: for point set \(X = \{x_i\}_{i=1}^{N} \) and \(Y = \{y_i\}_{i=1}^{N} \), find the transformation matrix \(A \):

\[
A = \text{argmax} \sum_{i=1}^{N} G_c(x_iA, y_i)
\]

(2)

where \(G_c(x, y) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-y)^2}{2\sigma^2}\right) \). This is called the maximum correntropy criterion (MCC), which is more robust to outliers than MSE.
- The fixed point solution to (2) is

\[
D = \text{diag}(G_0(f(x_1), y_1), ..., G_0(f(x_N), y_N))
A_{corr} = (f(X)^T D(X)^{-1}) (f(X) D(Y))
A = A_{corr} A_{affine}
\]

(3)

Convergence is guaranteed and stopping criterion can be easily set.
- Certain amount of non-rigid transformation is helpful for overcoming intra-class deformation. The Cauchy-Schwarz divergence \(D_{CS} \) describes two PDFs' similarity. A regularized \(D_{CS} \)-based cost function can be written as

\[
J = -2\log \sum_{i=1}^{N} \sum_{j=1}^{N} G_c(y_j, t_i +KW) + \log \sum_{i=1}^{N} \sum_{j=1}^{N} G_c(t_iKW, t_i + t_jKW) + \lambda \text{str}(W)\text{KW}
\]

(4)

where \(T = XA, K \) is the TPS matrix and \(W \) is the transformation matrix to be determined using fixed point solution in a manner similar to (3).

Shape Similarity Criterion
- A correntropy based shape similarity measure is:

\[
\text{corr. cost}(X, Y) = \sum_{i=1}^{N} G_c(y_i, \text{fournigrid}(f_{affine}(x_i)))
\]

(5)

This measure can be combined with the conventional SC-based similarity measure:

\[
\text{new cost}(X, Y) = \frac{\text{corr. cost}(X, Y)}{SC \cdot \text{corr}(X, Y)}
\]

(6)

The correntropy cost is able to suppress bad SC matches such that their effects are nearly negligible.

Experimental Results
- Shape registration: the query shape is registered to the template shape.
- Shape retrieval (Kimia-99 dataset): shown in the table are the "bull's eye" score.
- Marine animal classification: 5 instances shown are "templates". A "query" is classified as the specie of the template that produces highest matching score.

<table>
<thead>
<tr>
<th>Method</th>
<th>Island</th>
<th>Proteus</th>
<th>Penguin</th>
<th>Turtle</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC cost</td>
<td>99</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Corr. (affine only)</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>SC+Corr.</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>SC cost</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Corr. (affine only)</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>SC+Corr.</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Shock edit</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>SC+DP</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>SC+DP</td>
<td>99</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>98</td>
</tr>
</tbody>
</table>

- Both registration and recognition results outperform or matches up with state-of-the-art algorithms.