Sorry, you need to enable JavaScript to visit this website.

ICASSP 2017

ICASSP is the world's largest and most comprehensive technical conference on signal processing and its applications. It provides a fantastic networking opportunity for like-minded professionals from around the world. ICASSP 2017 conference will feature world-class presentations by internationally renowned speakers and cutting-edge session topics. Visit ICASSP 2017

INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS


Live concert recordings consist in long multitrack audio samples with significant interferences between channels. For audio engineering purposes, it is desirable to attenuate those interferences. Recently, we proposed an algorithm to this end based on Non-negative Matrix Factorization, that iteratively estimate the clean power spectral densities of the sources and the strength of each in each microphone signal, encoded in an interference matrix. Although it behaves well, this method is too demanding computationally for full-length concerts lasting more than one hour.

output.pdf

PDF icon output.pdf (42 downloads)

Paper Details

Authors:
Diego Di Carlo, Antoine Liutkus, Ken Deguernel
Submitted On:
13 April 2018 - 3:57am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

output.pdf

(42 downloads)

Keywords

Additional Categories

Subscribe

[1] Diego Di Carlo, Antoine Liutkus, Ken Deguernel, "INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/2643. Accessed: Jul. 15, 2018.
@article{2643-18,
url = {http://sigport.org/2643},
author = {Diego Di Carlo; Antoine Liutkus; Ken Deguernel },
publisher = {IEEE SigPort},
title = {INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS},
year = {2018} }
TY - EJOUR
T1 - INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS
AU - Diego Di Carlo; Antoine Liutkus; Ken Deguernel
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/2643
ER -
Diego Di Carlo, Antoine Liutkus, Ken Deguernel. (2018). INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS. IEEE SigPort. http://sigport.org/2643
Diego Di Carlo, Antoine Liutkus, Ken Deguernel, 2018. INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS. Available at: http://sigport.org/2643.
Diego Di Carlo, Antoine Liutkus, Ken Deguernel. (2018). "INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS." Web.
1. Diego Di Carlo, Antoine Liutkus, Ken Deguernel. INTERFERENCE REDUCTION ON FULL-LENGTH LIVE RECORDINGS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/2643

END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER

Paper Details

Authors:
Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng
Submitted On:
12 April 2018 - 11:05pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

0308_icassp07.pptx

(43 downloads)

Keywords

Subscribe

[1] Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng, "END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/2566. Accessed: Jul. 15, 2018.
@article{2566-18,
url = {http://sigport.org/2566},
author = {Dilek Hakkani-Tür; Paul Crook; Xiujun Li; Jianfeng Gao; Li Deng },
publisher = {IEEE SigPort},
title = {END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER},
year = {2018} }
TY - EJOUR
T1 - END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER
AU - Dilek Hakkani-Tür; Paul Crook; Xiujun Li; Jianfeng Gao; Li Deng
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/2566
ER -
Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng. (2018). END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER. IEEE SigPort. http://sigport.org/2566
Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng, 2018. END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER. Available at: http://sigport.org/2566.
Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng. (2018). "END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER." Web.
1. Dilek Hakkani-Tür, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng. END-TO-END JOINT LEARNING OF NATURAL LANGUAGE UNDERSTANDING AND DIALOGUE MANAGER [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/2566

Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques

Paper Details

Authors:
Alireza Zare, Alireza Aminlou, Miska M. Hannuksela
Submitted On:
27 September 2017 - 8:44am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP_2017_Zare_v02.pdf

(162 downloads)

Keywords

Subscribe

[1] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, "Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2248. Accessed: Jul. 15, 2018.
@article{2248-17,
url = {http://sigport.org/2248},
author = {Alireza Zare; Alireza Aminlou; Miska M. Hannuksela },
publisher = {IEEE SigPort},
title = {Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques},
year = {2017} }
TY - EJOUR
T1 - Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques
AU - Alireza Zare; Alireza Aminlou; Miska M. Hannuksela
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2248
ER -
Alireza Zare, Alireza Aminlou, Miska M. Hannuksela. (2017). Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques. IEEE SigPort. http://sigport.org/2248
Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, 2017. Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques. Available at: http://sigport.org/2248.
Alireza Zare, Alireza Aminlou, Miska M. Hannuksela. (2017). "Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques." Web.
1. Alireza Zare, Alireza Aminlou, Miska M. Hannuksela. Virtual Reality Content Streaming: Viewport-Dependent Projection and Tile-based Techniques [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2248

ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM

Paper Details

Authors:
Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans
Submitted On:
4 August 2017 - 4:29am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP2017_poster.pdf

(131 downloads)

Keywords

Subscribe

[1] Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans, "ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1801. Accessed: Jul. 15, 2018.
@article{1801-17,
url = {http://sigport.org/1801},
author = {Massimiliano Todisco; Moctar Mossi; Christophe Beaugeant; Nicholas Evans },
publisher = {IEEE SigPort},
title = {ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM},
year = {2017} }
TY - EJOUR
T1 - ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM
AU - Massimiliano Todisco; Moctar Mossi; Christophe Beaugeant; Nicholas Evans
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1801
ER -
Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans. (2017). ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM. IEEE SigPort. http://sigport.org/1801
Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans, 2017. ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM. Available at: http://sigport.org/1801.
Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans. (2017). "ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM." Web.
1. Massimiliano Todisco, Moctar Mossi, Christophe Beaugeant, Nicholas Evans. ARTIFICIAL BANDWIDTH EXTENSION USING THE CONSTANT Q TRANSFORM [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1801

SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION


In this paper we focus on the usefulness of verbal events for speech based emotion recognition. In particular, the use of phoneme sequences to encode verbal cues related to the expression of emotions is proposed and lexical features based on these phoneme sequences are introduced for use in automatic emotion recognition systems where manual transcripts are not available. Secondly, a novel estimate of emotional salience of verbal cues, applicable to both phoneme sequences and words, is presented.

Paper Details

Authors:
Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah
Submitted On:
3 August 2017 - 3:55am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

http://ieeexplore.ieee.org/document/7953274/

(142 downloads)

Keywords

Additional Categories

Subscribe

[1] Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah, "SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1800. Accessed: Jul. 15, 2018.
@article{1800-17,
url = {http://sigport.org/1800},
author = {Kalani Wataraka Gamage; Vidhyasaharan Sethu; Eliathamby Ambikairajah },
publisher = {IEEE SigPort},
title = {SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION},
year = {2017} }
TY - EJOUR
T1 - SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION
AU - Kalani Wataraka Gamage; Vidhyasaharan Sethu; Eliathamby Ambikairajah
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1800
ER -
Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah. (2017). SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION. IEEE SigPort. http://sigport.org/1800
Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah, 2017. SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION. Available at: http://sigport.org/1800.
Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah. (2017). "SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION." Web.
1. Kalani Wataraka Gamage, Vidhyasaharan Sethu, Eliathamby Ambikairajah. SALIENCE BASED LEXICAL FEATURES FOR EMOTION RECOGNITION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1800

OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS

Paper Details

Authors:
Submitted On:
22 May 2017 - 11:56pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Naveen ICASSP17 PhD Forum Paper

(173 downloads)

Keywords

Subscribe

[1] , " OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1796. Accessed: Jul. 15, 2018.
@article{1796-17,
url = {http://sigport.org/1796},
author = { },
publisher = {IEEE SigPort},
title = { OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS},
year = {2017} }
TY - EJOUR
T1 - OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1796
ER -
. (2017). OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS. IEEE SigPort. http://sigport.org/1796
, 2017. OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS. Available at: http://sigport.org/1796.
. (2017). " OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS." Web.
1. . OPTIMAL TRANSCEIVER DESIGN IN MULTI-USER MULTIPLE-INPUT MULTIPLE-OUTPUT WIRELESS NETWORKS [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1796

Decorrelation for Audio Object Coding


Object-based representations of audio content are increasingly
used in entertainment systems to deliver immersive and
personalized experiences. Efficient storage and transmission
of such content can be achieved by joint object coding algorithms
that convey a reduced number of downmix signals
together with parametric side information that enables object
reconstruction in the decoder. This paper presents an
approach to improve the performance of joint object coding
by adding one or more decorrelators to the decoding process.

Paper Details

Authors:
Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen
Submitted On:
19 May 2017 - 7:40am
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

ICASSP2017_FINAL.pdf

(166 downloads)

Keywords

Subscribe

[1] Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen, "Decorrelation for Audio Object Coding", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1795. Accessed: Jul. 15, 2018.
@article{1795-17,
url = {http://sigport.org/1795},
author = {Lars Villemoes; Toni Hirvonen; and Heiko Purnhagen },
publisher = {IEEE SigPort},
title = {Decorrelation for Audio Object Coding},
year = {2017} }
TY - EJOUR
T1 - Decorrelation for Audio Object Coding
AU - Lars Villemoes; Toni Hirvonen; and Heiko Purnhagen
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1795
ER -
Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen. (2017). Decorrelation for Audio Object Coding. IEEE SigPort. http://sigport.org/1795
Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen, 2017. Decorrelation for Audio Object Coding. Available at: http://sigport.org/1795.
Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen. (2017). "Decorrelation for Audio Object Coding." Web.
1. Lars Villemoes, Toni Hirvonen, and Heiko Purnhagen. Decorrelation for Audio Object Coding [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1795

FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION


Road detection is a key component of Advanced Driving Assistance Systems, which provides valid space and candidate regions of objects for vehicles. Mainstream road detection methods have focused on extracting discriminative features. In this paper, we propose a robust feature fusion framework, called “Feature++”, which is combined with superpixel feature and 3D feature extracted from stereo images. Then a neural network classifier is been trained to decide whether a superpixel is road region or not. Finally, the classified results are further refined by conditional random field.

poster_hwl.pdf

PDF icon poster_hwl.pdf (145 downloads)

Paper Details

Authors:
Guorong Cai,Zhun Zhong,Songzhi Su
Submitted On:
8 May 2017 - 5:17am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster_hwl.pdf

(145 downloads)

Keywords

Additional Categories

Subscribe

[1] Guorong Cai,Zhun Zhong,Songzhi Su, "FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1794. Accessed: Jul. 15, 2018.
@article{1794-17,
url = {http://sigport.org/1794},
author = {Guorong Cai;Zhun Zhong;Songzhi Su },
publisher = {IEEE SigPort},
title = {FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION},
year = {2017} }
TY - EJOUR
T1 - FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION
AU - Guorong Cai;Zhun Zhong;Songzhi Su
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1794
ER -
Guorong Cai,Zhun Zhong,Songzhi Su. (2017). FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION. IEEE SigPort. http://sigport.org/1794
Guorong Cai,Zhun Zhong,Songzhi Su, 2017. FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION. Available at: http://sigport.org/1794.
Guorong Cai,Zhun Zhong,Songzhi Su. (2017). "FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION." Web.
1. Guorong Cai,Zhun Zhong,Songzhi Su. FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1794

FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION


Road detection is a key component of Advanced Driving Assistance Systems, which provides valid space and candidate regions of objects for vehicles. Mainstream road detection methods have focused on extracting discriminative features. In this paper, we propose a robust feature fusion framework, called “Feature++”, which is combined with superpixel feature and 3D feature extracted from stereo images. Then a neural network classifier is been trained to decide whether a superpixel is road region or not. Finally, the classified results are further refined by conditional random field.

poster_hwl.pdf

PDF icon poster_hwl.pdf (146 downloads)

Paper Details

Authors:
Guorong Cai,Zhun Zhong,Songzhi Su
Submitted On:
8 May 2017 - 5:17am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

poster_hwl.pdf

(146 downloads)

Keywords

Additional Categories

Subscribe

[1] Guorong Cai,Zhun Zhong,Songzhi Su, "FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1793. Accessed: Jul. 15, 2018.
@article{1793-17,
url = {http://sigport.org/1793},
author = {Guorong Cai;Zhun Zhong;Songzhi Su },
publisher = {IEEE SigPort},
title = {FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION},
year = {2017} }
TY - EJOUR
T1 - FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION
AU - Guorong Cai;Zhun Zhong;Songzhi Su
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1793
ER -
Guorong Cai,Zhun Zhong,Songzhi Su. (2017). FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION. IEEE SigPort. http://sigport.org/1793
Guorong Cai,Zhun Zhong,Songzhi Su, 2017. FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION. Available at: http://sigport.org/1793.
Guorong Cai,Zhun Zhong,Songzhi Su. (2017). "FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION." Web.
1. Guorong Cai,Zhun Zhong,Songzhi Su. FEATURE++: CROSS DIMENSION FEATURE FUSION FOR ROAD DETECTION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1793

Time of Arrival Disambiguation Using the Linear Radon Transform


Echo labeling, the challenging task of assigning acoustic reflections to image sources, is equivalent to the highly-important disambiguation task in room geometry inference. A method using the Radon transform, an image processing tool, is proposed to address this challenge. The method relies on acoustic wavefront detection in room impulse response stacks, obtained with a uniform linear array of loudspeakers and one microphone. We show in our experiments that the proposed method can both label and detect echoes.

Paper Details

Authors:
Youssef El Baba, Andreas Walther, Emanuël Habets
Submitted On:
5 April 2017 - 11:44am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

LRT-SL talk.pdf

(199 downloads)

Keywords

Subscribe

[1] Youssef El Baba, Andreas Walther, Emanuël Habets, "Time of Arrival Disambiguation Using the Linear Radon Transform", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1790. Accessed: Jul. 15, 2018.
@article{1790-17,
url = {http://sigport.org/1790},
author = {Youssef El Baba; Andreas Walther; Emanuël Habets },
publisher = {IEEE SigPort},
title = {Time of Arrival Disambiguation Using the Linear Radon Transform},
year = {2017} }
TY - EJOUR
T1 - Time of Arrival Disambiguation Using the Linear Radon Transform
AU - Youssef El Baba; Andreas Walther; Emanuël Habets
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1790
ER -
Youssef El Baba, Andreas Walther, Emanuël Habets. (2017). Time of Arrival Disambiguation Using the Linear Radon Transform. IEEE SigPort. http://sigport.org/1790
Youssef El Baba, Andreas Walther, Emanuël Habets, 2017. Time of Arrival Disambiguation Using the Linear Radon Transform. Available at: http://sigport.org/1790.
Youssef El Baba, Andreas Walther, Emanuël Habets. (2017). "Time of Arrival Disambiguation Using the Linear Radon Transform." Web.
1. Youssef El Baba, Andreas Walther, Emanuël Habets. Time of Arrival Disambiguation Using the Linear Radon Transform [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1790

Pages