Sorry, you need to enable JavaScript to visit this website.

facebooktwittermailshare

Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval

up
1 user has voted: Hanwei Wu

Paper Details

Authors:
Markus Flierl
Submitted On:
12 November 2019 - 8:47am
Short Link:
Type:
Presentation Slides
Event:
Presenter's Name:
Hanwei Wu
Paper Code:
1570567770
Document Year:
2019
Cite

Document Files

SIP2019.pdf

(14)

Subscribe

[1] Markus Flierl, "Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4950. Accessed: Dec. 12, 2019.
@article{4950-19,
url = {http://sigport.org/4950},
author = {Markus Flierl },
publisher = {IEEE SigPort},
title = {Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval},
year = {2019} }
TY - EJOUR
T1 - Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval
AU - Markus Flierl
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4950
ER -
Markus Flierl. (2019). Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval. IEEE SigPort. http://sigport.org/4950
Markus Flierl, 2019. Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval. Available at: http://sigport.org/4950.
Markus Flierl. (2019). "Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval." Web.
1. Markus Flierl. Learning Product Codebooks using Vector-Quantized Autoencoders for Image Retrieval [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4950