Documents
Poster
Speech Emotion Recognition with Distilled Prosodic and Linguistic Affect Representations
- DOI:
- 10.60864/xqg9-5r70
- Citation Author(s):
- Submitted by:
- Debaditya Shome
- Last updated:
- 6 June 2024 - 10:27am
- Document Type:
- Poster
- Document Year:
- 2024
- Event:
- Presenters:
- Debaditya Shome
- Paper Code:
- SLP-P39.10
- Categories:
- Log in to post comments
We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.