Sorry, you need to enable JavaScript to visit this website.

MUG: A General Meeting Understanding And Generation Benchmark

Citation Author(s):
Qinglin Zhang, Chong Deng, Jiaqing Liu, Hai Yu, Qian Chen, Wen Wang, Zhijie Yan, Jinglin Liu, Yi Ren, Zhou Zhao
Submitted by:
Wen Wang
Last updated:
23 May 2023 - 7:29pm
Document Type:
Presentation Slides
Document Year:
2023
Event:
Presenters:
Wen Wang
Paper Code:
SLT-P44.11
 

Listening to long video/audio recordings from video conferencing and online courses for acquiring information is extremely inefficient. Even after ASR systems transcribe recordings into long-form spoken language documents, reading ASR transcripts only partly speeds up seeking information. It has been observed that a range of NLP applications, such as keyphrase extraction, topic segmentation, and summarization, significantly improve users' efficiency in grasping important information. The meeting scenario is among the most valuable scenarios for deploying these spoken language processing (SLP) capabilities. However, the lack of large-scale public meeting datasets annotated for these SLP tasks severely hinders their advancement. To prompt SLP advancement, we establish a large-scale general Meeting Understanding and Generation Benchmark (MUG) to benchmark the performance of a wide range of SLP tasks, including topic segmentation, topic-level and session-level extractive summarization and topic title generation, keyphrase extraction, and action item detection. To facilitate the MUG benchmark, we construct and release a large-scale meeting dataset for comprehensive long-form SLP development, the AliMeeting4MUG Corpus, which consists of 654 recorded Mandarin meeting sessions with diverse topic coverage, with manual annotations for SLP tasks on manual transcripts of meeting recordings. To the best of our knowledge, the AliMeeting4MUG Corpus is so far the largest meeting corpus in scale and facilitates most SLP tasks. In this paper, we provide a detailed introduction of this corpus, SLP tasks and evaluation methods, baseline systems and their performance. The Alimeeting4MUG corpus is released at https://modelscope.cn/datasets/modelscope/Alimeeting4MUG/summary and the baseline system is released at https://github.com/alibaba-damo-academy/SpokenNLP.

up
0 users have voted: