Sorry, you need to enable JavaScript to visit this website.

Existing speech-based coronavirus disease 2019 (COVID-19) detection systems provide poor interpretability and limited robustness to unseen data conditions. In this paper, we propose a system to overcome these limitations. In particular, we propose to fuse two different feature modalities with patient metadata in order to capture different properties of the disease. The first feature set is based on modulation spectral properties of speech. The second comprises spectral shape/descriptor features recently used for COVID-19 detection.

Categories:
6 Views