Sorry, you need to enable JavaScript to visit this website.

Federated learning (FL) allows to train a massive amount of data privately due to its decentralized structure. Stochastic gradient descent (SGD) is commonly used for FL due to its good empirical performance, but sensitive user information can still be inferred from weight updates shared during FL iterations. We consider Gaussian mechanisms to preserve local differential privacy (LDP) of user data in the FL model with SGD. The trade-offs between user privacy, global utility, and transmission rate are proved by defining appropriate metrics for FL with LDP.

Categories:
18 Views

Many commercial and forensic applications of speech demand the extraction of information about the speaker characteristics, which falls into the broad category of speaker profiling. The speaker characteristics needed for profiling include physical traits of the speaker like height, age, and gender of the speaker along with the native language of the speaker. Many of the datasets available have only partial information for speaker profiling.

Categories:
4 Views

In several applications, including imaging of deformable objects while in motion, simultaneous localization and mapping, and unlabeled sensing, we encounter the problem of recovering a signal that is measured subject to unknown permutations. In this paper we take a fresh look at this problem through the lens of optimal transport (OT). In particular, we recognize that in most practical applications the unknown permutations are not arbitrary but some are more likely to occur than others.

Categories:
1 Views

Open relation extraction (OpenRE) is the task of extracting relation schemes from open-domain corpora. Most existing OpenRE methods either do not fully benefit from high-quality labeled corpora or can not learn semantic representation directly, affecting downstream clustering efficiency. To address these problems, in this work, we propose a novel learning framework named MORE (Metric learning-based Open Relation Extraction.

Categories:
6 Views

During the COVID-19 pandemic the health authorities at airports and train stations try to screen and identify the travellers possibly exposed to the virus. However, many individuals avoid getting tested and hence may misreport their travel history. This is a challenge for the health authorities who wish to ascertain the truly susceptible cases in spite of this strategic misreporting. We investigate the problem of questioning travellers to classify them for further testing when the travellers are strategic or are unwilling to reveal their travel histories.

Categories:
1 Views

During the COVID-19 pandemic the health authorities at airports and train stations try to screen and identify the travellers possibly exposed to the virus. However, many individuals avoid getting tested and hence may misreport their travel history. This is a challenge for the health authorities who wish to ascertain the truly susceptible cases in spite of this strategic misreporting. We investigate the problem of questioning travellers to classify them for further testing when the travellers are strategic or are unwilling to reveal their travel histories.

Categories:
2 Views

In this paper the problem of restoration of unsupervised nonnegative sparse signals is addressed in the Bayesian framework. We introduce a new probabilistic hierarchical prior, based on the Generalized Hyperbolic (GH) distribution, which explicitly accounts for sparsity. On the one hand, this new prior allows us to take into account the non-negativity.

Categories:
4 Views

Pages