Sorry, you need to enable JavaScript to visit this website.

Recent healthcare applications of natural language processing involve multi-label classification of health records using the International Classification of Diseases (ICD). While prior research highlights intricate text models and explores external knowledge like hierarchical ICD ontology, fewer studies integrate code relationships from whole datasets to enhance ICD coding accuracy. This study presents a modular approach, sequentially combining graph-based integration of ICD code co-occurrence with a hard-coded hierarchical enriched text representation drawn from the ICD ontology.

Categories:
16 Views