Sorry, you need to enable JavaScript to visit this website.

Bio-inspired multimedia systems and signal processing

A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS


This paper focuses on multi-sensor anomaly detection for moving cognitive agents using both external and private first-person visual observations. Both observation types are used to characterize agents’ motion in a given environment. The proposed method generates locally uniform motion models by dividing a Gaussian process that approximates agents’ displacements on the scene and provides a Shared Level (SL) self-awareness based on Environment Centered (EC) models.

Paper Details

Authors:
Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni
Submitted On:
18 April 2018 - 10:40am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

SS-L2.5 A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS.pdf

(71 downloads)

Subscribe

[1] Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni, "A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/2964. Accessed: Oct. 19, 2018.
@article{2964-18,
url = {http://sigport.org/2964},
author = {Mohamad Baydoun; Mahdyar Ravanbakhsh; Damian Campo; Pablo Marin; David Martin; Lucio Marcenaro; Andrea Cavallaro; Carlo S. Regazzoni },
publisher = {IEEE SigPort},
title = {A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS},
year = {2018} }
TY - EJOUR
T1 - A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS
AU - Mohamad Baydoun; Mahdyar Ravanbakhsh; Damian Campo; Pablo Marin; David Martin; Lucio Marcenaro; Andrea Cavallaro; Carlo S. Regazzoni
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/2964
ER -
Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni. (2018). A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS. IEEE SigPort. http://sigport.org/2964
Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni, 2018. A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS. Available at: http://sigport.org/2964.
Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni. (2018). "A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS." Web.
1. Mohamad Baydoun, Mahdyar Ravanbakhsh, Damian Campo, Pablo Marin, David Martin, Lucio Marcenaro, Andrea Cavallaro, Carlo S. Regazzoni. A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/2964

Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues


Map

Presentation Slides for "Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues" at GlobalSIP 2015

Paper Details

Authors:
Ghassan AlRegib
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

GlobalSIP15_UncertainitySaliency.pdf

(436 downloads)

Subscribe

[1] Ghassan AlRegib, "Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/402. Accessed: Oct. 19, 2018.
@article{402-15,
url = {http://sigport.org/402},
author = {Ghassan AlRegib },
publisher = {IEEE SigPort},
title = {Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues},
year = {2015} }
TY - EJOUR
T1 - Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues
AU - Ghassan AlRegib
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/402
ER -
Ghassan AlRegib. (2015). Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues. IEEE SigPort. http://sigport.org/402
Ghassan AlRegib, 2015. Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues. Available at: http://sigport.org/402.
Ghassan AlRegib. (2015). "Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues." Web.
1. Ghassan AlRegib. Unsupervised Estimation Of Uncertainty For Video Saliency Detection Using Temporal Cues [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/402