Sorry, you need to enable JavaScript to visit this website.

Emerging: Big Data

Distinguished Lecture: IOT, Data and Healthcare: How do we get it right


Abstract

DL_Wendy.pdf

PDF icon DL_Wendy.pdf (2 downloads)

Paper Details

Authors:
Wendy Nilsen
Submitted On:
16 November 2017 - 11:01am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

DL_Wendy.pdf

(2 downloads)

Keywords

Subscribe

[1] Wendy Nilsen, "Distinguished Lecture: IOT, Data and Healthcare: How do we get it right", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2362. Accessed: Nov. 20, 2017.
@article{2362-17,
url = {http://sigport.org/2362},
author = {Wendy Nilsen },
publisher = {IEEE SigPort},
title = {Distinguished Lecture: IOT, Data and Healthcare: How do we get it right},
year = {2017} }
TY - EJOUR
T1 - Distinguished Lecture: IOT, Data and Healthcare: How do we get it right
AU - Wendy Nilsen
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2362
ER -
Wendy Nilsen. (2017). Distinguished Lecture: IOT, Data and Healthcare: How do we get it right. IEEE SigPort. http://sigport.org/2362
Wendy Nilsen, 2017. Distinguished Lecture: IOT, Data and Healthcare: How do we get it right. Available at: http://sigport.org/2362.
Wendy Nilsen. (2017). "Distinguished Lecture: IOT, Data and Healthcare: How do we get it right." Web.
1. Wendy Nilsen. Distinguished Lecture: IOT, Data and Healthcare: How do we get it right [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2362

SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics

Paper Details

Authors:
Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya
Submitted On:
15 November 2017 - 9:23am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Slides_KM

(4 downloads)

Keywords

Subscribe

[1] Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya, "SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2357. Accessed: Nov. 20, 2017.
@article{2357-17,
url = {http://sigport.org/2357},
author = {Rabindra K. Barik; Harishchandra Dubey; Kunal Mankodiya },
publisher = {IEEE SigPort},
title = {SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics},
year = {2017} }
TY - EJOUR
T1 - SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics
AU - Rabindra K. Barik; Harishchandra Dubey; Kunal Mankodiya
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2357
ER -
Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya. (2017). SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics. IEEE SigPort. http://sigport.org/2357
Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya, 2017. SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics. Available at: http://sigport.org/2357.
Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya. (2017). "SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics." Web.
1. Rabindra K. Barik, Harishchandra Dubey, Kunal Mankodiya. SoA-Fog: A Secure Service-Oriented Edge Computing Architecture for Smart Health Big Data Analytics [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2357

Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things

Paper Details

Authors:
Submitted On:
13 November 2017 - 12:54am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Smart Fog_ Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things.pptx

(6 downloads)

Keywords

Subscribe

[1] , "Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2331. Accessed: Nov. 20, 2017.
@article{2331-17,
url = {http://sigport.org/2331},
author = { },
publisher = {IEEE SigPort},
title = {Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things},
year = {2017} }
TY - EJOUR
T1 - Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2331
ER -
. (2017). Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things. IEEE SigPort. http://sigport.org/2331
, 2017. Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things. Available at: http://sigport.org/2331.
. (2017). "Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things." Web.
1. . Smart Fog: Fog Computing Framework for Telehealth Big Data Analytics in Wearable Internet of Things [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2331

VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY


Large scale images allow pathologists to perform reviews, using
computer workstations instead of microscopes. This trend raises
a wide range of issues related to the management of these massive
datasets. In particular, efficient solutions for data storage and processing
have to be developed in order to deliver increasingly reliable
and faster analyses. In addition, the improvement of workflows also
requires the reinforcement of visualization capabilities. In this paper,
we present a new virtual microscopy (VM) approach for interactivetime

Paper Details

Authors:
Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas
Submitted On:
16 September 2017 - 1:40am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:

Document Files

Poster_ICIP_2017.pdf

(26 downloads)

Keywords

Subscribe

[1] Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas, "VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2177. Accessed: Nov. 20, 2017.
@article{2177-17,
url = {http://sigport.org/2177},
author = {Jonathan Sarton; Nicolas Courilleau; Anne-Sophie Hérard; Thierry Delzescaux; Yannick Remion; Laurent Lucas },
publisher = {IEEE SigPort},
title = {VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY},
year = {2017} }
TY - EJOUR
T1 - VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY
AU - Jonathan Sarton; Nicolas Courilleau; Anne-Sophie Hérard; Thierry Delzescaux; Yannick Remion; Laurent Lucas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2177
ER -
Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas. (2017). VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY. IEEE SigPort. http://sigport.org/2177
Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas, 2017. VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY. Available at: http://sigport.org/2177.
Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas. (2017). "VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY." Web.
1. Jonathan Sarton, Nicolas Courilleau, Anne-Sophie Hérard, Thierry Delzescaux, Yannick Remion, Laurent Lucas. VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2177

Summarization of Human Activity Videos Using a Salient Dictionary


Video summarization has become more prominent during the last decade, due to the massive amount of available digital video content. A video summarization algorithm is typically fed an input video and expected to extract a set of important key-frames which represent the entire content, convey semantic meaning and are significantly more concise than the original input. The most wide-spread approach relies on video frame clustering and extraction of the frames closest to the cluster centroids as key-frames.

Paper Details

Authors:
Anastasios Tefas, Ioannis Pitas
Submitted On:
13 September 2017 - 11:18am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Key-frame extraction from human activity videos via salient dictionary learning-based video summarization

(32 downloads)

Keywords

Subscribe

[1] Anastasios Tefas, Ioannis Pitas, "Summarization of Human Activity Videos Using a Salient Dictionary", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1976. Accessed: Nov. 20, 2017.
@article{1976-17,
url = {http://sigport.org/1976},
author = {Anastasios Tefas; Ioannis Pitas },
publisher = {IEEE SigPort},
title = {Summarization of Human Activity Videos Using a Salient Dictionary},
year = {2017} }
TY - EJOUR
T1 - Summarization of Human Activity Videos Using a Salient Dictionary
AU - Anastasios Tefas; Ioannis Pitas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1976
ER -
Anastasios Tefas, Ioannis Pitas. (2017). Summarization of Human Activity Videos Using a Salient Dictionary. IEEE SigPort. http://sigport.org/1976
Anastasios Tefas, Ioannis Pitas, 2017. Summarization of Human Activity Videos Using a Salient Dictionary. Available at: http://sigport.org/1976.
Anastasios Tefas, Ioannis Pitas. (2017). "Summarization of Human Activity Videos Using a Salient Dictionary." Web.
1. Anastasios Tefas, Ioannis Pitas. Summarization of Human Activity Videos Using a Salient Dictionary [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1976

Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics


Video summarization is a timely and rapidly developing research field with broad commercial interest, due to the increasing availability of massive video data. Relevant algorithms face the challenge of needing to achieve a careful balance between summary compactness, enjoyability and content coverage. The specific case of stereoscopic $3$D theatrical films has become more important over the past years, but not received corresponding research attention.

Paper Details

Authors:
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas
Submitted On:
13 September 2017 - 11:12am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Stereoscopic Movie Summarization Conforming to Narrative Characteristics

(25 downloads)

Keywords

Subscribe

[1] Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, "Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1975. Accessed: Nov. 20, 2017.
@article{1975-17,
url = {http://sigport.org/1975},
author = {Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas },
publisher = {IEEE SigPort},
title = {Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics},
year = {2017} }
TY - EJOUR
T1 - Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics
AU - Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1975
ER -
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics. IEEE SigPort. http://sigport.org/1975
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, 2017. Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics. Available at: http://sigport.org/1975.
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). "Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics." Web.
1. Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1975

AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering


One of the longstanding problems in spectral graph clustering (SGC) is the so-called model order selection problem: automated selection of the correct number of clusters. This is equivalent to the problem of finding the number of connected components or communities in an undirected graph. In this paper, we propose AMOS, an automated model order selection algorithm for SGC.

Paper Details

Authors:
Pin-Yu Chen, Thibaut Gensollen, Alfred Hero
Submitted On:
5 March 2017 - 11:06pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP_AMOS_2017.pdf

(143 downloads)

Keywords

Subscribe

[1] Pin-Yu Chen, Thibaut Gensollen, Alfred Hero, "AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1643. Accessed: Nov. 20, 2017.
@article{1643-17,
url = {http://sigport.org/1643},
author = {Pin-Yu Chen; Thibaut Gensollen; Alfred Hero },
publisher = {IEEE SigPort},
title = {AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering},
year = {2017} }
TY - EJOUR
T1 - AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering
AU - Pin-Yu Chen; Thibaut Gensollen; Alfred Hero
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1643
ER -
Pin-Yu Chen, Thibaut Gensollen, Alfred Hero. (2017). AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering. IEEE SigPort. http://sigport.org/1643
Pin-Yu Chen, Thibaut Gensollen, Alfred Hero, 2017. AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering. Available at: http://sigport.org/1643.
Pin-Yu Chen, Thibaut Gensollen, Alfred Hero. (2017). "AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering." Web.
1. Pin-Yu Chen, Thibaut Gensollen, Alfred Hero. AMOS: An Automated Model Order Selection Algorithm for Spectral Graph Clustering [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1643

Summarization of Human Activity Videos Via Low-Rank Approximation


Summarization of videos depicting human activities is a timely problem with important applications, e.g., in the domains of surveillance or film/TV production, that steadily becomes more relevant. Research on video summarization has mainly relied on global clustering or local (frame-by-frame) saliency methods to provide automated algorithmic

Paper Details

Authors:
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas
Submitted On:
1 March 2017 - 6:25am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Summarization of Human Activity Videos Via Low-Rank Approximation

(322 downloads)

Keywords

Additional Categories

Subscribe

[1] Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, "Summarization of Human Activity Videos Via Low-Rank Approximation", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1548. Accessed: Nov. 20, 2017.
@article{1548-17,
url = {http://sigport.org/1548},
author = {Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas },
publisher = {IEEE SigPort},
title = {Summarization of Human Activity Videos Via Low-Rank Approximation},
year = {2017} }
TY - EJOUR
T1 - Summarization of Human Activity Videos Via Low-Rank Approximation
AU - Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1548
ER -
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). Summarization of Human Activity Videos Via Low-Rank Approximation. IEEE SigPort. http://sigport.org/1548
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, 2017. Summarization of Human Activity Videos Via Low-Rank Approximation. Available at: http://sigport.org/1548.
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). "Summarization of Human Activity Videos Via Low-Rank Approximation." Web.
1. Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. Summarization of Human Activity Videos Via Low-Rank Approximation [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1548

Summarization of Human Activity Videos Via Low-Rank Approximation


Summarization of videos depicting human activities is a timely problem with important applications, e.g., in the domains of surveillance or film/TV production, that steadily becomes more relevant. Research on video summarization has mainly relied on global clustering or local (frame-by-frame) saliency methods to provide automated algorithmic

Paper Details

Authors:
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas
Submitted On:
1 March 2017 - 6:25am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Summarization of Human Activity Videos Via Low-Rank Approximation

(322 downloads)

Keywords

Additional Categories

Subscribe

[1] Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, "Summarization of Human Activity Videos Via Low-Rank Approximation", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1547. Accessed: Nov. 20, 2017.
@article{1547-17,
url = {http://sigport.org/1547},
author = {Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas },
publisher = {IEEE SigPort},
title = {Summarization of Human Activity Videos Via Low-Rank Approximation},
year = {2017} }
TY - EJOUR
T1 - Summarization of Human Activity Videos Via Low-Rank Approximation
AU - Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1547
ER -
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). Summarization of Human Activity Videos Via Low-Rank Approximation. IEEE SigPort. http://sigport.org/1547
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, 2017. Summarization of Human Activity Videos Via Low-Rank Approximation. Available at: http://sigport.org/1547.
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). "Summarization of Human Activity Videos Via Low-Rank Approximation." Web.
1. Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. Summarization of Human Activity Videos Via Low-Rank Approximation [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1547

Summarization of Human Activity Videos Via Low-Rank Approximation


Summarization of videos depicting human activities is a timely problem with important applications, e.g., in the domains of surveillance or film/TV production, that steadily becomes more relevant. Research on video summarization has mainly relied on global clustering or local (frame-by-frame) saliency methods to provide automated algorithmic

Paper Details

Authors:
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas
Submitted On:
1 March 2017 - 6:25am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Summarization of Human Activity Videos Via Low-Rank Approximation

(322 downloads)

Keywords

Additional Categories

Subscribe

[1] Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, "Summarization of Human Activity Videos Via Low-Rank Approximation", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1546. Accessed: Nov. 20, 2017.
@article{1546-17,
url = {http://sigport.org/1546},
author = {Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas },
publisher = {IEEE SigPort},
title = {Summarization of Human Activity Videos Via Low-Rank Approximation},
year = {2017} }
TY - EJOUR
T1 - Summarization of Human Activity Videos Via Low-Rank Approximation
AU - Anastasios Tefas; Nikos Nikolaidis; Ioannis Pitas
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1546
ER -
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). Summarization of Human Activity Videos Via Low-Rank Approximation. IEEE SigPort. http://sigport.org/1546
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas, 2017. Summarization of Human Activity Videos Via Low-Rank Approximation. Available at: http://sigport.org/1546.
Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. (2017). "Summarization of Human Activity Videos Via Low-Rank Approximation." Web.
1. Anastasios Tefas, Nikos Nikolaidis, Ioannis Pitas. Summarization of Human Activity Videos Via Low-Rank Approximation [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1546

Pages