Sorry, you need to enable JavaScript to visit this website.

This paper describes a new video coding tool in the Versatile Video Coding standard (VVC) named as luma mapping with chroma scaling (LMCS). Experimental compression performance results for LMCS and non-normative examples for deriving LMCS parameter values are also provided. LMCS has two main components: 1) a process for mapping input luma code values to a new set of code values for use inside the coding loop; and 2) a luma-dependent process for scaling chroma residue values.

Categories:
460 Views

Segmenting a document image into text-lines and words finds applications in many research areas of DIA(Document Image Analysis) such as OCR, Word Spotting, and document retrieval. However, carrying out segmentation operation directly in the compressed document images is still an unexplored and challenging research area. Since JPEG is most widely accepted compression algorithm, this research paper attempts to segment a JPEG compressed printed text document image into text-lines and words, without fully decompressing the image.

Categories:
54 Views

In the treatment of epilepsy with intracranial electroencephalogram(iEEG), the recognition accuracy is low, and it is
difficult to find the correlation between channels because of the large amount of channel numbers and time series data. In
order to solve these problems, we propose a novel EEG feature prepresentation method for seizure detection based on the
Log Mel-Filterbank energy feature. We propose to adapt the Mel-Filterbank energy to EEG features with logrithm transform

Categories:
53 Views

A novel single-image rain removal method is proposed based on multi-scale cascading image generation (MSCG). In particular, the proposed method consists of an encoder extracting multi-scale features from images and a decoder generating de-rained images with a cascading mechanism. The encoder ensembles the convolution neural networks using the kernels with different sizes, and integrates their outputs across different scales.

Categories:
26 Views

Discovering and exploiting the causality in deep neural networks (DNNs) are crucial challenges for understanding and reasoning causal effects (CE) on an explainable visual model. "Intervention" has been widely used for recognizing a causal relation ontologically. In this paper, we propose a causal inference framework for visual reasoning via do-calculus. To study the intervention effects on pixel-level features for causal reasoning, we introduce pixel-wise masking and adversarial perturbation.

Categories:
50 Views

Pages