Sorry, you need to enable JavaScript to visit this website.

ALL-NEURAL ONLINE SOURCE SEPARATION, COUNTING, AND DIARIZATION FOR MEETING ANALYSIS

Citation Author(s):
Thilo von Neumann, Keisuke Kinoshita, Marc Delcroix, Shoko Araki, Tomohiro Nakatani, Reinhold Haeb-Umbach
Submitted by:
Thilo von Neumann
Last updated:
10 May 2019 - 12:26pm
Document Type:
Presentation Slides
Document Year:
2019
Event:
Presenters:
Thilo von Neumann
Paper Code:
AASP-L4.1

Abstract

Automatic meeting analysis comprises the tasks of speaker counting, speaker diarization, and the separation of overlapped speech, followed by automatic speech recognition. This all has to be carried out on arbitrarily long sessions and, ideally, in an online or block-online manner. While significant progress has been made on individual tasks, this paper presents for the first time an all-neural approach to simultaneous speaker counting, diarization and source separation. The NN-based estimator operates in a block-online fashion and tracks speakers even if they remain silent for a number of time blocks, thus learning a stable output order for the separated sources. The neural network is recurrent over time as well as over the number of sources. The simulation experiments show that state of the art separation performance is achieved, while at the same time delivering good diarization and source counting results. It even generalizes well to an unseen large number of blocks.

https://ieeexplore.ieee.org/document/8682572

up
0 users have voted:

Files

presentation.pdf

(305)