Sorry, you need to enable JavaScript to visit this website.

A CONTRARIO PARADIGM FOR YOLO-BASED INFRARED SMALL TARGET DETECTION

DOI:
10.60864/t1a7-y545
Citation Author(s):
Alina Ciocarlan, Sylvie Le Hégarat-Mascle, Sidonie Lefebvre, Arnaud Woiselle, Clara Barbanson
Submitted by:
Alina Ciocarlan
Last updated:
6 June 2024 - 10:54am
Document Type:
Poster
Document Year:
2024
Presenters:
Alina Ciocarlan
Paper Code:
MLSP-P28.3
 

Detecting small to tiny targets in infrared images is a challenging task in computer vision, especially when it comes to differentiating these targets from noisy or textured backgrounds. Traditional object detection methods such as YOLO
struggle to detect tiny objects compared to segmentation neural networks, resulting in weaker performance when detecting small targets. To reduce the number of false alarms while maintaining a high detection rate, we introduce an a contrario decision criterion into the training of a YOLO detector. The latter takes advantage of the unexpectedness of small targets to discriminate them from complex backgrounds. Adding this statistical criterion to a YOLOv7-tiny bridges the performance gap between state-of-the-art segmentation methods for infrared small target detection and object detection networks. It also significantly increases the robustness of YOLO towards few-shot settings.

up
0 users have voted: