Sorry, you need to enable JavaScript to visit this website.

Pattern recognition and classification (MLR-PATT)

Reconstruction-free deep convolutional neural networks for partially observed images


Conventional image discrimination tasks are performed on fully observed images. In challenging real imaging scenarios, where sensing systems are energy demanding or need to operate with limited bandwidth and exposure-time budgets, or defective pixels, where the data collected often suffers from missing information, and this makes the task extremely hard. In this paper, we leverage Convolutional Neural Networks (CNNs) to extract information from partially observed images.

Paper Details

Authors:
Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran
Submitted On:
26 November 2018 - 8:14pm
Short Link:
Type:
Event:
Document Year:
Cite

Document Files

GlobalSIP_Poster_v2.pptx

Subscribe

[1] Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran, "Reconstruction-free deep convolutional neural networks for partially observed images", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3789. Accessed: Mar. 26, 2019.
@article{3789-18,
url = {http://sigport.org/3789},
author = {Arun Asokan Nair; Luoluo Liu; Akshay Rangamani; Peter Chin; Muyinatu A. Lediju Bell; Trac D. Tran },
publisher = {IEEE SigPort},
title = {Reconstruction-free deep convolutional neural networks for partially observed images},
year = {2018} }
TY - EJOUR
T1 - Reconstruction-free deep convolutional neural networks for partially observed images
AU - Arun Asokan Nair; Luoluo Liu; Akshay Rangamani; Peter Chin; Muyinatu A. Lediju Bell; Trac D. Tran
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3789
ER -
Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran. (2018). Reconstruction-free deep convolutional neural networks for partially observed images. IEEE SigPort. http://sigport.org/3789
Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran, 2018. Reconstruction-free deep convolutional neural networks for partially observed images. Available at: http://sigport.org/3789.
Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran. (2018). "Reconstruction-free deep convolutional neural networks for partially observed images." Web.
1. Arun Asokan Nair, Luoluo Liu, Akshay Rangamani, Peter Chin, Muyinatu A. Lediju Bell, Trac D. Tran. Reconstruction-free deep convolutional neural networks for partially observed images [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3789

A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES


Efficient deployment of Internet of Things (IoT) sensors primarily depends on allowing the adjustment of sensor power consumption according to the radio frequency (RF) propagation channel which is dictated by the type of the surrounding indoor environment. This paper develops a machine learning approach for indoor environment classification by exploiting support vector machine (SVM) based on RF signatures computed from real-time measurements.

Paper Details

Authors:
Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair
Submitted On:
24 November 2018 - 4:04pm
Short Link:
Type:
Event:
Document Year:
Cite

Document Files

GlobalSIP_Poster.pdf

Subscribe

[1] Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair, "A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3772. Accessed: Mar. 26, 2019.
@article{3772-18,
url = {http://sigport.org/3772},
author = {Mohamed I. AlHajri; Nazar T. Ali; Raed M. Shubair },
publisher = {IEEE SigPort},
title = {A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES},
year = {2018} }
TY - EJOUR
T1 - A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES
AU - Mohamed I. AlHajri; Nazar T. Ali; Raed M. Shubair
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3772
ER -
Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair. (2018). A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES. IEEE SigPort. http://sigport.org/3772
Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair, 2018. A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES. Available at: http://sigport.org/3772.
Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair. (2018). "A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES." Web.
1. Mohamed I. AlHajri, Nazar T. Ali, Raed M. Shubair. A MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF INDOOR ENVIRONMENTS USING RF SIGNATURES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3772

Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance


Principal component analysis (PCA) and linear discriminant analysis (LDA) are the most well-known methods to reduce the dimensionality of feature vectors. However, both methods face challenges when used on multilabel data—each data point may be associated to multiple labels. PCA does not take advantage of label information thus the performance is sacrificed. LDA can exploit class information for multiclass data, but cannot be directly applied to multilabel problems. In this paper, we propose a novel dimensionality reduction method for multilabel data.

Paper Details

Authors:
Honglei Zhang, Moncef Gabbouj
Submitted On:
7 October 2018 - 1:32am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster_ICIP_2018.pdf

Subscribe

[1] Honglei Zhang, Moncef Gabbouj, "Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3582. Accessed: Mar. 26, 2019.
@article{3582-18,
url = {http://sigport.org/3582},
author = {Honglei Zhang; Moncef Gabbouj },
publisher = {IEEE SigPort},
title = {Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance},
year = {2018} }
TY - EJOUR
T1 - Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance
AU - Honglei Zhang; Moncef Gabbouj
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3582
ER -
Honglei Zhang, Moncef Gabbouj. (2018). Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance. IEEE SigPort. http://sigport.org/3582
Honglei Zhang, Moncef Gabbouj, 2018. Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance. Available at: http://sigport.org/3582.
Honglei Zhang, Moncef Gabbouj. (2018). "Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance." Web.
1. Honglei Zhang, Moncef Gabbouj. Feature Dimensionality Reduction with Graph Embedding and Generalized Hamming Distance [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3582

Fully Convolutional Siamese Networks for Change Detection


This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images. Most notably, we propose two Siamese extensions of fully convolutional networks which use heuristics about the current problem to achieve the best results in our tests on two open change detection datasets, using both RGB and multispectral images. We show that our system is able to learn from scratch using annotated change detection images.

Paper Details

Authors:
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch
Submitted On:
5 October 2018 - 5:03am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

_ICIP2018__Poster.pdf

Subscribe

[1] Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, "Fully Convolutional Siamese Networks for Change Detection", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3524. Accessed: Mar. 26, 2019.
@article{3524-18,
url = {http://sigport.org/3524},
author = {Rodrigo Caye Daudt; Bertrand Le Saux; Alexandre Boulch },
publisher = {IEEE SigPort},
title = {Fully Convolutional Siamese Networks for Change Detection},
year = {2018} }
TY - EJOUR
T1 - Fully Convolutional Siamese Networks for Change Detection
AU - Rodrigo Caye Daudt; Bertrand Le Saux; Alexandre Boulch
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3524
ER -
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. (2018). Fully Convolutional Siamese Networks for Change Detection. IEEE SigPort. http://sigport.org/3524
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, 2018. Fully Convolutional Siamese Networks for Change Detection. Available at: http://sigport.org/3524.
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. (2018). "Fully Convolutional Siamese Networks for Change Detection." Web.
1. Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. Fully Convolutional Siamese Networks for Change Detection [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3524

CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS


Noisy labels modeling makes a convolutional neural network (CNN) more robust for the image classification problem. However, current noisy labels modeling methods usually require an expectation-maximization (EM) based procedure to optimize the parameters, which is computationally expensive. In this paper, we utilize a fast annealing training method to speed up the CNN training in every M-step.

Paper Details

Authors:
Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia
Submitted On:
8 October 2018 - 5:30am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

MA.L1.5_2605_CAT_CNN_NL_v4.pdf

Subscribe

[1] Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia, "CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3506. Accessed: Mar. 26, 2019.
@article{3506-18,
url = {http://sigport.org/3506},
author = {Jiawei Li; Tao Dai; Qingtao Tang; Yeli Xing; Shu-Tao Xia },
publisher = {IEEE SigPort},
title = {CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS},
year = {2018} }
TY - EJOUR
T1 - CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS
AU - Jiawei Li; Tao Dai; Qingtao Tang; Yeli Xing; Shu-Tao Xia
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3506
ER -
Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia. (2018). CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS. IEEE SigPort. http://sigport.org/3506
Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia, 2018. CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS. Available at: http://sigport.org/3506.
Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia. (2018). "CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS." Web.
1. Jiawei Li, Tao Dai, Qingtao Tang, Yeli Xing, Shu-Tao Xia. CYCLIC ANNEALING TRAINING CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION WITH NOISY LABELS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3506

S3D: Stacking Segmental P3D for Action Quality Assessment


Action quality assessment is crucial in areas of sports, surgery and assembly line where action skills can be evaluated. In this paper, we propose the Segment-based P3D-fused network S3D built-upon ED-TCN and push the performance on the UNLV-Dive dataset by a significant margin. We verify that segment-aware training performs better than full-video training which turns out to focus on the water spray. We show that temporal segmentation can be embedded with few efforts.

Paper Details

Authors:
Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran
Submitted On:
5 October 2018 - 2:08am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

AI Referee: Score Olympic Games

Subscribe

[1] Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran, "S3D: Stacking Segmental P3D for Action Quality Assessment", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3501. Accessed: Mar. 26, 2019.
@article{3501-18,
url = {http://sigport.org/3501},
author = {Ye Tian; Austin Reiter; Gregory D. Hager; Trac D. Tran },
publisher = {IEEE SigPort},
title = {S3D: Stacking Segmental P3D for Action Quality Assessment},
year = {2018} }
TY - EJOUR
T1 - S3D: Stacking Segmental P3D for Action Quality Assessment
AU - Ye Tian; Austin Reiter; Gregory D. Hager; Trac D. Tran
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3501
ER -
Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran. (2018). S3D: Stacking Segmental P3D for Action Quality Assessment. IEEE SigPort. http://sigport.org/3501
Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran, 2018. S3D: Stacking Segmental P3D for Action Quality Assessment. Available at: http://sigport.org/3501.
Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran. (2018). "S3D: Stacking Segmental P3D for Action Quality Assessment." Web.
1. Ye Tian, Austin Reiter, Gregory D. Hager, Trac D. Tran. S3D: Stacking Segmental P3D for Action Quality Assessment [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3501

MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK

Paper Details

Authors:
JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang
Submitted On:
5 October 2018 - 1:53am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster-ICIP-jkg-2.pdf

Subscribe

[1] JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang, "MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3498. Accessed: Mar. 26, 2019.
@article{3498-18,
url = {http://sigport.org/3498},
author = {JingyangZhang; Kaige Jia; PengshuaiYang; FeiQiao; Qi Wei; XinjunLiu; HuazhongYang },
publisher = {IEEE SigPort},
title = {MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK},
year = {2018} }
TY - EJOUR
T1 - MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK
AU - JingyangZhang; Kaige Jia; PengshuaiYang; FeiQiao; Qi Wei; XinjunLiu; HuazhongYang
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3498
ER -
JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang. (2018). MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK. IEEE SigPort. http://sigport.org/3498
JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang, 2018. MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK. Available at: http://sigport.org/3498.
JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang. (2018). "MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK." Web.
1. JingyangZhang, Kaige Jia, PengshuaiYang, FeiQiao, Qi Wei, XinjunLiu, HuazhongYang. MINTIN: MAXOUT-BASED AND INPUT-NORMALIZED TRANSFORMATION INVARIANT NEURAL NETWORK [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3498

DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION


In this paper, we propose a novel encoding method for the representation of human action videos, that we call Discriminative Action Vector of Locally Aggregated Descriptors (DA-VLAD). DA-VLAD is motivated by the fact that there are many unnecessary and overlapping frames that cause non-discriminative codewords during the training process. DA-VLAD deals with this issue by extracting class-specific clusters and learning the discriminative power of these codewords in the form of informative weights.

Paper Details

Authors:
Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin
Submitted On:
4 October 2018 - 11:16am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster_ICIP.pdf

Subscribe

[1] Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin, "DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3431. Accessed: Mar. 26, 2019.
@article{3431-18,
url = {http://sigport.org/3431},
author = {Fiza Murtaza; Muhammad Haroon Yousaf; Sergio A Velastin },
publisher = {IEEE SigPort},
title = {DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION},
year = {2018} }
TY - EJOUR
T1 - DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION
AU - Fiza Murtaza; Muhammad Haroon Yousaf; Sergio A Velastin
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3431
ER -
Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin. (2018). DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION. IEEE SigPort. http://sigport.org/3431
Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin, 2018. DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION. Available at: http://sigport.org/3431.
Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin. (2018). "DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION." Web.
1. Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A Velastin. DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3431

GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES


Prostate cancer is one of the types of cancer with the highest incidence in humans. In particular, prostate cancer is the main cause of death from cancer in men over 70 years of age. The automatic analysis of histological images is nowadays a key factor for helping doctors in the diagnosis task. In this paper, we present granulometries as a novel image descriptor to identify abnormal patterns in the prostatic tissue. The morphological alteration suffered by the main structures of pathological glands are registered by the proposed descriptor and achieved in a feature vector.

Paper Details

Authors:
Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales
Submitted On:
4 October 2018 - 10:46am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP_Poster_2018.pdf

Subscribe

[1] Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales, "GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3425. Accessed: Mar. 26, 2019.
@article{3425-18,
url = {http://sigport.org/3425},
author = {Á. E. Esteban; A. Colomer; V. Naranjo; M. A. Sales },
publisher = {IEEE SigPort},
title = {GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES},
year = {2018} }
TY - EJOUR
T1 - GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES
AU - Á. E. Esteban; A. Colomer; V. Naranjo; M. A. Sales
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3425
ER -
Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales. (2018). GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES. IEEE SigPort. http://sigport.org/3425
Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales, 2018. GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES. Available at: http://sigport.org/3425.
Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales. (2018). "GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES." Web.
1. Á. E. Esteban, A. Colomer, V. Naranjo, M. A. Sales. GRANULOMETRY-BASED DESCRIPTOR FOR PATHOLOGICAL TISSUE DISCRIMINATION IN HISTOPATHOLOGICAL IMAGES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3425

KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION

Paper Details

Authors:
Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao
Submitted On:
4 October 2018 - 10:22am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

2018icipposter2.pdf

Subscribe

[1] Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao, "KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3422. Accessed: Mar. 26, 2019.
@article{3422-18,
url = {http://sigport.org/3422},
author = {Wang zhikai; Zhang chongyan; Luo wu; Lin weiyao },
publisher = {IEEE SigPort},
title = {KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION},
year = {2018} }
TY - EJOUR
T1 - KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION
AU - Wang zhikai; Zhang chongyan; Luo wu; Lin weiyao
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3422
ER -
Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao. (2018). KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION. IEEE SigPort. http://sigport.org/3422
Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao, 2018. KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION. Available at: http://sigport.org/3422.
Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao. (2018). "KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION." Web.
1. Wang zhikai, Zhang chongyan, Luo wu, Lin weiyao. KEY JOINTS SELECTION AND SPATIOTEMPORAL MINING FOR SKELETON-BASEDACTION RECOGNITION [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3422

Pages