Sorry, you need to enable JavaScript to visit this website.

Early detection of COVID-19 is key in containing the pandemic. Disease detection and evaluation based on imaging is fast and cheap and therefore plays an important role in COVID-19 handling. COVID-19 is easier to detect in chest CT, however, it is expensive, non-portable, and difficult to disinfect, making it unfit as a point-of-care (POC) modality. On the other hand, chest X-ray (CXR) and lung ultrasound (LUS) are widely used, yet, COVID-19 findings in these modalities are not always very clear.


The design of handcrafted neural networks requires a lot of time and resources. Recent techniques in Neural Architecture Search (NAS) have proven to be competitive or better than traditional handcrafted design, although they require domain knowledge and have generally used limited search spaces. In this paper, we propose a novel framework for neural architecture search, utilizing a dictionary of models of base tasks and the similarity between the target task and the atoms of the dictionary; hence, generating an adaptive search space based on the base models of the dictionary.


Aerial image classification is challenging for current deep learning models due to the varied geo-spatial object scales and the complicated scene spatial arrangement. Thus, it is necessary to stress the key local feature response from a variety of scales so as to represent discriminative convolutional features. In this paper, we propose a deep multi-scale multiple instance learning (DMSMIL) framework to tackle the above challenges. Firstly, we develop a differential multi-scale dilated convolution feature extractor to exploit the different patterns from different scales.


Generative models are popular tools with a wide range of applications. Nevertheless, it is as vulnerable to adversarial samples as classifiers. The existing attack methods mainly focus on generating adversarial examples by adding imperceptible perturbations to input, which leads to wrong result. However, we focus on another aspect of attack, i.e., cheating models by significant changes. The former induces Type II error and the latter causes Type I error. In this paper, we propose Type I attack to generative models such as VAE and GAN.


This paper introduces the application of a visual relationship classifier as a standalone system that is meant to be used with external detectors. Through these lens, we propose a training scheme that uses unannotated pairs of objects as negative samples in order to improve precision. The proposed network architecture incorporates common techniques presented in related state-of-the-art solutions with a novel positional encoding scheme.