Sorry, you need to enable JavaScript to visit this website.

facebooktwittermailshare

EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION

Abstract: 

In the last few years, social media networks have changed human life experience and behavior as it has broken down communication barriers, allowing ordinary people to actively produce multimedia content on a massive scale. On this wise, the information dissemination in social media platforms becomes increasingly common. However, misinformation is propagated with the same facility and velocity as real news, though it can result in irreversible damage to an individual or society at large. Solving this problem is not a trivial task, considering the reduced size of the text messages usually posted on these communication vehicles. This paper proposes an end-to-end framework called EMET to classify the reliability of small messages posted on social media platforms. Our method leverages text-embeddings from multilingual-encoder transformers that take into consideration the semantic knowledge from preceding trustworthy news and the use of the reader's reactions to detect misleading content. Our findings demonstrated the value of user interaction and prior information to check social media post's credibility.

up
0 users have voted:

Paper Details

Authors:
Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha
Submitted On:
20 May 2020 - 11:36am
Short Link:
Type:
Presentation Slides
Event:
Presenter's Name:
Stephane Schwarz
Paper Code:
https://www.youtube.com/redirect?v=RRK-8TonV4U&redir_token=qG0REqKo5HNvj84VXtPBlKSmsLV8MTU5MDA3NDE4OUAxNTg5OTg3Nzg5&event=video_description&q=https%3A%2F%2Fgithub.com%2Fstephanefschwarz%2FEMET
Document Year:
2020
Cite

Document Files

ICASSP.pdf

(12)

Subscribe

[1] Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha , "EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION", IEEE SigPort, 2020. [Online]. Available: http://sigport.org/5417. Accessed: Jul. 08, 2020.
@article{5417-20,
url = {http://sigport.org/5417},
author = {Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha },
publisher = {IEEE SigPort},
title = {EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION},
year = {2020} }
TY - EJOUR
T1 - EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION
AU - Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha
PY - 2020
PB - IEEE SigPort
UR - http://sigport.org/5417
ER -
Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha . (2020). EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION. IEEE SigPort. http://sigport.org/5417
Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha , 2020. EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION. Available at: http://sigport.org/5417.
Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha . (2020). "EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION." Web.
1. Stephane Schwarz ; Antônio Theóphilo ; Anderson Rocha . EMET : EMBEDDINGS FROM MULTILINGUAL- ENCODER TRANSFORMER FOR FAKE NEWS DETECTION [Internet]. IEEE SigPort; 2020. Available from : http://sigport.org/5417