Sorry, you need to enable JavaScript to visit this website.

Abstract—While more and more forensic techniques have been proposed to detect the processing history of multimedia content, one starts to wonder if there exists a fundamental limit on the capability of forensics. In other words, besides keeping on searching what investigators can do, it is also important to find out the limit of their capability and what they cannot do. In this work, we explore the fundamental limit of operation forensics by proposing an information theoretical framework.

Categories:
7 Views

Abstract—Identifying a signal’s origin and how it was acquired is an important forensic problem. While forensic techniques currently exist to determine a signal’s acquisition history, these techniques do not account for the possibility that a signal could be compressively sensed. This is an important problem since compressive sensing techniques have seen increased popularity in recent years. In this paper, we propose a set of forensic techniques to identify signals acquired by compressive sensing. We do this by first identifying the fingerprints left in a signal by compressive sensing.

Categories:
2 Views

Due to the widespread deployment of fingerprint/face/speaker recognition systems, attacking deep learning based biometric systems has drawn more and more attention. Previous research mainly studied the attack to the vision-based system, such as fingerprint and face recognition. While the attack for speaker recognition has not been investigated yet, although it has been widely used in our daily life.

Categories:
54 Views

In the last few years, social media networks have changed human life experience and behavior as it has broken down communication barriers, allowing ordinary people to actively produce multimedia content on a massive scale. On this wise, the information dissemination in social media platforms becomes increasingly common. However, misinformation is propagated with the same facility and velocity as real news, though it can result in irreversible damage to an individual or society at large.

Categories:
18 Views

Images captured nowadays are of varying dimensions with smartphones and DSLR’s allowing users to choose from a list of available image resolutions. It is therefore imperative for forensic algorithms such as resampling detection to scale well for images of varying dimensions. However, in our experiments we observed that many state-of-the-art forensic algorithms are sensitive to image size and their performance quickly degenerates when operated on images of diverse dimensions despite re-training them using multiple image sizes.

Categories:
14 Views

Latent fingerprint reconstruction is a vital preprocessing step for its identification. This task is very challenging due to not only existing complicated degradation patterns but also its scarcity of paired training data. To address these challenges, we propose a novel generative adversarial network (GAN) based data augmentation scheme to improve such reconstruction.

Categories:
3 Views

In this paper, we apply cross-layer intersection mechanism to dense u-net for image forgery detection and localization. We first train DenseNet for binary classification. Spatial rich model (SRM) filters are adopted for capturing residual signals in the detected images. Then we propose a new approach to preserve complete feature maps of fully connected layer and consider them as the spatial decision information for image segmentation.

Categories:
30 Views

Backdoor attacks against CNNs represent a new threat against deep learning systems, due to the possibility of corrupting the training set so to induce an incorrect behaviour at test time. To avoid that the trainer recognises the presence of the corrupted samples, the corruption of the training set must be as stealthy as possible. Previous works have focused on the stealthiness of the perturbation injected into the training samples, however they all assume that the labels of the corrupted samples are also poisoned.

Categories:
11 Views

Pages