Sorry, you need to enable JavaScript to visit this website.

facebooktwittermailshare

Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters

Abstract: 

Altitude estimation is important for successful control and navigation of unmanned aerial vehicles (UAVs). UAVs do not have indoor access to GPS signals and can only use on-board sensors for reliable estimation of altitude. Unfortunately, most existing navigation schemes are not robust to the presence of abnormal obstructions above and below the UAV. In this work, we propose a novel strategy for tackling the altitude estimation problem that utilizes multiple model adaptive estimation (MMAE), where the candidate models correspond to four scenarios: no obstacles above and below the UAV; obstacles above the UAV; obstacles below the UAV; and obstacles above and below the UAV. The principle of Occam’s razor ensures that the model that offers the most parsimonious explanation of the sensor data has the most influence in the MMAE algorithm. We validate the proposed scheme on synthetic and real sensor data.

up
0 users have voted:

Paper Details

Authors:
Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo
Submitted On:
14 May 2020 - 8:35pm
Short Link:
Type:
Presentation Slides
Event:
Presenter's Name:
Liu Yang
Paper Code:
SPTM-L6.4
Document Year:
2020
Cite

Document Files

ICASSP 2020.pdf

(37)

Subscribe

[1] Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo, "Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters", IEEE SigPort, 2020. [Online]. Available: http://sigport.org/5327. Accessed: Sep. 24, 2020.
@article{5327-20,
url = {http://sigport.org/5327},
author = {Liu Yang; Hechuan Wang; Yousef El-Laham; José Fonte; David Pérez; Mónica F. Bugallo },
publisher = {IEEE SigPort},
title = {Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters},
year = {2020} }
TY - EJOUR
T1 - Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters
AU - Liu Yang; Hechuan Wang; Yousef El-Laham; José Fonte; David Pérez; Mónica F. Bugallo
PY - 2020
PB - IEEE SigPort
UR - http://sigport.org/5327
ER -
Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo. (2020). Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters. IEEE SigPort. http://sigport.org/5327
Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo, 2020. Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters. Available at: http://sigport.org/5327.
Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo. (2020). "Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters." Web.
1. Liu Yang, Hechuan Wang, Yousef El-Laham, José Fonte, David Pérez, Mónica F. Bugallo. Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters [Internet]. IEEE SigPort; 2020. Available from : http://sigport.org/5327