Sorry, you need to enable JavaScript to visit this website.

Presentation Slides for 'Multiple-kernel Adaptive Segmentation and Tracking (MAST) for Robust Object Tracking'

Citation Author(s):
Jenq-Neng Hwang,Yen-Shuo Lin,Jen-Hui Chuang
Submitted by:
Zheng Tang
Last updated:
17 March 2016 - 3:46pm
Document Type:
Presentation Slides
Document Year:
2016
Event:
Presenters:
Zheng Tang
 

In a video surveillance system with static cameras, object segmentation often fails when part of the object has similar color with the background, resulting in poor performance of the subsequent object tracking. Multiple kernels have been utilized in object tracking to deal with occlusion, but the performance still highly depends on segmentation. This paper presents an innovative system, named Multiple-kernel Adaptive Segmentation and Tracking (MAST), which dynamically controls the decision thresholds of background subtraction and shadow removal around the adaptive kernel regions based on the preliminary tracking results. Then the objects are tracked for the second time according to the adaptively segmented foreground. Evaluations of both segmentation and tracking on benchmark datasets and our own recorded video sequences demonstrate that the proposed method can successfully track objects in similar-color background and/or shadow areas with favorable segmentation performance.

up
0 users have voted: