Sorry, you need to enable JavaScript to visit this website.

On the Sum of Gamma-Gamma Variates with Application to the Fast Outage Probability Evaluation Over Fading Channels

Citation Author(s):
Chaouki ben Issaid, Nadhir ben Rached, Abla Kammoun, Mohamed-Slim Alouini, Raul Tempone
Submitted by:
Chaouki ben Issaid
Last updated:
7 December 2016 - 1:39am
Document Type:
Presentation Slides
Document Year:
2016
Event:
Presenters:
Nadhir ben Rached
Paper Code:
1191
 

The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverberation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities
encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice.
This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the
left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of multibranch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative
error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

up
0 users have voted: