Sorry, you need to enable JavaScript to visit this website.

In this paper, we consider two practical coded compressive imaging techniques. We investigate the optimal number of measurements under quadratic signal-to-noise-ratio (SNR) decrease. We focus on imaging scenarios in both real and complex vector spaces. In real vector spaces, we consider focal plane array (FPA) based super-resolution imaging with a constant measurement time constraint. Our model is comprised of a spatial light modulator and a low resolution FPA for modulating and sampling the incoming light intensity, respectively.

Categories:
26 Views