Sorry, you need to enable JavaScript to visit this website.

In this paper, we propose a novel vehicle re-identification method based on a Deep Joint Discriminative Learning (DJDL) model, which utilizes a deep convolutional network to effectively extract discriminative representations for vehicle images. To exploit properties and relationship among samples in different views, we design a unified framework to combine several different tasks efficiently, including identification, attribute recognition, verification and triplet tasks. The whole network is optimized jointly via a specific batch composition design.

Categories:
20 Views