Sorry, you need to enable JavaScript to visit this website.

Audio and Acoustic Signal Processing

Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting


Optimal resource allocation in interference networks requires the solution of non-convex optimization problems. Except from treating interference as noise (IAN) one usually has to optimize jointly over the achievable rates and transmit powers. This non-convexity is normally only due to the transmit powers while the rates are linear. Conventional approaches like the Polyblock Algorithm treat all variables equally and, thus, require a two layer solver to exploit the linearity in the rates and keep the computational complexity at a reasonable level.

poster.pdf

PDF icon Poster (55 downloads)

Paper Details

Authors:
Submitted On:
21 June 2018 - 11:11am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

Poster

(55 downloads)

Keywords

Additional Categories

Subscribe

[1] , "Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3282. Accessed: Nov. 19, 2018.
@article{3282-18,
url = {http://sigport.org/3282},
author = { },
publisher = {IEEE SigPort},
title = {Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting},
year = {2018} }
TY - EJOUR
T1 - Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3282
ER -
. (2018). Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting. IEEE SigPort. http://sigport.org/3282
, 2018. Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting. Available at: http://sigport.org/3282.
. (2018). "Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting." Web.
1. . Optimal Resource Allocation for Non-Regenerative Multiway Relaying with Rate Splitting [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3282

COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT


In this talk we discuss some recent limit laws for empirical optimal transport distances from a simulation perspective. On discrete spaces, this requires to solve another optimal transport problem in each simulation step, which reveals simulations of such limit laws computational demanding. We discuss an approximation strategy to overcome this burden. In particular, we examine empirically an upper bound for such limiting distributions on discrete spaces based on a spanning tree approximation which can be computed explicitly.

Paper Details

Authors:
Carla Tameling, Axel Munk
Submitted On:
31 May 2018 - 2:52am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Presentation Slides Learning Lecture

(54 downloads)

Keywords

Additional Categories

Subscribe

[1] Carla Tameling, Axel Munk, "COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3222. Accessed: Nov. 19, 2018.
@article{3222-18,
url = {http://sigport.org/3222},
author = {Carla Tameling; Axel Munk },
publisher = {IEEE SigPort},
title = {COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT},
year = {2018} }
TY - EJOUR
T1 - COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT
AU - Carla Tameling; Axel Munk
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3222
ER -
Carla Tameling, Axel Munk. (2018). COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT. IEEE SigPort. http://sigport.org/3222
Carla Tameling, Axel Munk, 2018. COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT. Available at: http://sigport.org/3222.
Carla Tameling, Axel Munk. (2018). "COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT." Web.
1. Carla Tameling, Axel Munk. COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3222

Unsupervised Learning of Semantic Audio Representations

Paper Details

Authors:
Submitted On:
24 May 2018 - 8:46pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP18_ Unsupervised Learning of Semantic Audio Representations.pdf

(133 downloads)

Subscribe

[1] , "Unsupervised Learning of Semantic Audio Representations", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3208. Accessed: Nov. 19, 2018.
@article{3208-18,
url = {http://sigport.org/3208},
author = { },
publisher = {IEEE SigPort},
title = {Unsupervised Learning of Semantic Audio Representations},
year = {2018} }
TY - EJOUR
T1 - Unsupervised Learning of Semantic Audio Representations
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3208
ER -
. (2018). Unsupervised Learning of Semantic Audio Representations. IEEE SigPort. http://sigport.org/3208
, 2018. Unsupervised Learning of Semantic Audio Representations. Available at: http://sigport.org/3208.
. (2018). "Unsupervised Learning of Semantic Audio Representations." Web.
1. . Unsupervised Learning of Semantic Audio Representations [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3208

Study Of Dense Network Approaches For Speech Emotion Recognition

Paper Details

Authors:
Mohammed Abdelwahab, Carlos Busso
Submitted On:
30 April 2018 - 11:45am
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

Abdelwahab_ICASSP_2018-poster.pdf

(104 downloads)

Subscribe

[1] Mohammed Abdelwahab, Carlos Busso, " Study Of Dense Network Approaches For Speech Emotion Recognition", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3192. Accessed: Nov. 19, 2018.
@article{3192-18,
url = {http://sigport.org/3192},
author = {Mohammed Abdelwahab; Carlos Busso },
publisher = {IEEE SigPort},
title = { Study Of Dense Network Approaches For Speech Emotion Recognition},
year = {2018} }
TY - EJOUR
T1 - Study Of Dense Network Approaches For Speech Emotion Recognition
AU - Mohammed Abdelwahab; Carlos Busso
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3192
ER -
Mohammed Abdelwahab, Carlos Busso. (2018). Study Of Dense Network Approaches For Speech Emotion Recognition. IEEE SigPort. http://sigport.org/3192
Mohammed Abdelwahab, Carlos Busso, 2018. Study Of Dense Network Approaches For Speech Emotion Recognition. Available at: http://sigport.org/3192.
Mohammed Abdelwahab, Carlos Busso. (2018). " Study Of Dense Network Approaches For Speech Emotion Recognition." Web.
1. Mohammed Abdelwahab, Carlos Busso. Study Of Dense Network Approaches For Speech Emotion Recognition [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3192

Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment

Paper Details

Authors:
Submitted On:
30 April 2018 - 10:36am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

main.pdf

(152 downloads)

Subscribe

[1] , "Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3189. Accessed: Nov. 19, 2018.
@article{3189-18,
url = {http://sigport.org/3189},
author = { },
publisher = {IEEE SigPort},
title = {Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment},
year = {2018} }
TY - EJOUR
T1 - Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3189
ER -
. (2018). Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment. IEEE SigPort. http://sigport.org/3189
, 2018. Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment. Available at: http://sigport.org/3189.
. (2018). "Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment." Web.
1. . Speech Prediction using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3189

Compressive Sampling of Sound Fields Using Moving Microphones

Paper Details

Authors:
Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins
Submitted On:
24 April 2018 - 11:24am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

presICASSP4.pdf

(124 downloads)

Subscribe

[1] Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins, "Compressive Sampling of Sound Fields Using Moving Microphones", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3169. Accessed: Nov. 19, 2018.
@article{3169-18,
url = {http://sigport.org/3169},
author = {Fabrice Katzberg; Radoslaw Mazur; Marco Maass; Philipp Koch; Alfred Mertins },
publisher = {IEEE SigPort},
title = {Compressive Sampling of Sound Fields Using Moving Microphones},
year = {2018} }
TY - EJOUR
T1 - Compressive Sampling of Sound Fields Using Moving Microphones
AU - Fabrice Katzberg; Radoslaw Mazur; Marco Maass; Philipp Koch; Alfred Mertins
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3169
ER -
Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins. (2018). Compressive Sampling of Sound Fields Using Moving Microphones. IEEE SigPort. http://sigport.org/3169
Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins, 2018. Compressive Sampling of Sound Fields Using Moving Microphones. Available at: http://sigport.org/3169.
Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins. (2018). "Compressive Sampling of Sound Fields Using Moving Microphones." Web.
1. Fabrice Katzberg, Radoslaw Mazur, Marco Maass, Philipp Koch, Alfred Mertins. Compressive Sampling of Sound Fields Using Moving Microphones [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3169

MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL

Paper Details

Authors:
Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao
Submitted On:
23 April 2018 - 7:59pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

MultiDialect LAS

(126 downloads)

Subscribe

[1] Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao, "MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3154. Accessed: Nov. 19, 2018.
@article{3154-18,
url = {http://sigport.org/3154},
author = {Bo Li; Tara Sainath; Khe Chai Sim; Michiel Bacchiani; Eugene Weinstein; Patrick Nguyen; Zhifeng Chen; Yonghui Wu; Kanishka Rao },
publisher = {IEEE SigPort},
title = {MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL},
year = {2018} }
TY - EJOUR
T1 - MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL
AU - Bo Li; Tara Sainath; Khe Chai Sim; Michiel Bacchiani; Eugene Weinstein; Patrick Nguyen; Zhifeng Chen; Yonghui Wu; Kanishka Rao
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3154
ER -
Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao. (2018). MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL. IEEE SigPort. http://sigport.org/3154
Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao, 2018. MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL. Available at: http://sigport.org/3154.
Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao. (2018). "MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL." Web.
1. Bo Li, Tara Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick Nguyen, Zhifeng Chen, Yonghui Wu, Kanishka Rao. MULTI-DIALECT SPEECH RECOGNITION WITH A SINGLE SEQUENCE-TO-SEQUENCE MODEL [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3154

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK

Paper Details

Authors:
Submitted On:
22 April 2018 - 11:10pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

WenjieGuan-3304-2018_ICASSP_POSTER.pdf

(128 downloads)

Subscribe

[1] , "MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3142. Accessed: Nov. 19, 2018.
@article{3142-18,
url = {http://sigport.org/3142},
author = { },
publisher = {IEEE SigPort},
title = {MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK},
year = {2018} }
TY - EJOUR
T1 - MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3142
ER -
. (2018). MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. IEEE SigPort. http://sigport.org/3142
, 2018. MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Available at: http://sigport.org/3142.
. (2018). "MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK." Web.
1. . MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3142

Whole Sentence Neural Language Model


Recurrent neural networks have become increasingly popular for the task of language modeling achieving impressive gains in state-of-the-art speech recognition and natural language processing (NLP) tasks. Recurrent models exploit word dependencies over a much longer context window (as retained by the history states) than what is feasible with n-gram language models.

Paper Details

Authors:
Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran
Submitted On:
20 April 2018 - 10:30pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

whole sentence neural language model

(210 downloads)

Keywords

Additional Categories

Subscribe

[1] Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran, "Whole Sentence Neural Language Model ", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3118. Accessed: Nov. 19, 2018.
@article{3118-18,
url = {http://sigport.org/3118},
author = {Abhinav Sethy; Kartik Audhkhasi; Bhuvana Ramabhadran },
publisher = {IEEE SigPort},
title = {Whole Sentence Neural Language Model },
year = {2018} }
TY - EJOUR
T1 - Whole Sentence Neural Language Model
AU - Abhinav Sethy; Kartik Audhkhasi; Bhuvana Ramabhadran
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3118
ER -
Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran. (2018). Whole Sentence Neural Language Model . IEEE SigPort. http://sigport.org/3118
Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran, 2018. Whole Sentence Neural Language Model . Available at: http://sigport.org/3118.
Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran. (2018). "Whole Sentence Neural Language Model ." Web.
1. Abhinav Sethy, Kartik Audhkhasi, Bhuvana Ramabhadran. Whole Sentence Neural Language Model [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3118

Signboard Saliency Detection in Street Videos

Paper Details

Authors:
Submitted On:
20 April 2018 - 4:33pm
Short Link:
Type:

Document Files

ICASSP_onkar.pdf

(118 downloads)

Subscribe

[1] , "Signboard Saliency Detection in Street Videos", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3114. Accessed: Nov. 19, 2018.
@article{3114-18,
url = {http://sigport.org/3114},
author = { },
publisher = {IEEE SigPort},
title = {Signboard Saliency Detection in Street Videos},
year = {2018} }
TY - EJOUR
T1 - Signboard Saliency Detection in Street Videos
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3114
ER -
. (2018). Signboard Saliency Detection in Street Videos. IEEE SigPort. http://sigport.org/3114
, 2018. Signboard Saliency Detection in Street Videos. Available at: http://sigport.org/3114.
. (2018). "Signboard Saliency Detection in Street Videos." Web.
1. . Signboard Saliency Detection in Street Videos [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3114

Pages