Documents
Presentation Slides
Approximate Support Recovery of Atomic Line Spectral Estimation: A Tale of Resolution and Precision
- Citation Author(s):
- Submitted by:
- Qiuwei Li
- Last updated:
- 10 December 2016 - 3:39pm
- Document Type:
- Presentation Slides
- Document Year:
- 2016
- Event:
- Presenters:
- Qiuwei Li
- Paper Code:
- 1306
- Categories:
- Log in to post comments
This work investigates the parameter estimation performance of super-resolution line spectral estimation using atomic norm minimization. The focus is on analyzing the algorithm's accuracy of inferring the frequencies and complex magnitudes from noisy observations. When the Signal-to-Noise Ratio is reasonably high and the true frequencies are separated by $O(\frac{1}{n})$, the atomic norm estimator is shown to localize the correct number of frequencies, each within a neighborhood of size $O(\sqrt{\frac{\log n}{n^3}} \sigma)$ of one of the true frequencies. Here $n$ is half the number of temporal samples and $\sigma^2$ is the Gaussian noise variance. The analysis is based on a primal-dual witness construction procedure. The obtained error bound matches the Cram\'er-Rao lower bound up to a logarithmic factor. The relationship between resolution (separation of frequencies) and precision or accuracy of the estimator is highlighted.