- Bayesian learning; Bayesian signal processing (MLR-BAYL)
- Bounds on performance (MLR-PERF)
- Applications in Systems Biology (MLR-SYSB)
- Applications in Music and Audio Processing (MLR-MUSI)
- Applications in Data Fusion (MLR-FUSI)
- Cognitive information processing (MLR-COGP)
- Distributed and Cooperative Learning (MLR-DIST)
- Learning theory and algorithms (MLR-LEAR)
- Neural network learning (MLR-NNLR)
- Information-theoretic learning (MLR-INFO)
- Independent component analysis (MLR-ICAN)
- Graphical and kernel methods (MLR-GRKN)
- Other applications of machine learning (MLR-APPL)
- Pattern recognition and classification (MLR-PATT)
- Source separation (MLR-SSEP)
- Sequential learning; sequential decision methods (MLR-SLER)
- Read more about Sparse Modeling
- Log in to post comments
Sparse Modeling in Image Processing and Deep LearningSparse approximation is a well-established theory, with a profound impact on the fields of signal and image processing. In this talk we start by presenting this model and its features, and then turn to describe two special cases of it – the convolutional sparse coding (CSC) and its multi-layered version (ML-CSC). Amazingly, as we will carefully show, ML-CSC provides a solid theoretical foundation to … deep-learning.
- Categories:
- Read more about Accurate colon segmentation using 2D convolutional neural networks with 3D contextual information
- Log in to post comments
This study introduces an innovative framework for accurate colon segmentation in abdomen CT scans, addressing the unique challenges of this task. Our architecture enhances well-established 2D segmentation models by incorporating 3D contextual information through a novel method that generates an attention map for a given slice by considering its neighboring slices. This approach achieves effective colon segmentation without complex 3D convolutional neural networks (CNNs) or Long Short-Term Memory (LSTM) networks by combining 2D CNNs.
- Categories:
- Read more about Giraffe: A Genetic Programming Algorithm To Build Deep Learning Ensembles For Ecg Arrhythmia Classification
- Log in to post comments
Cardiovascular diseases remain one of the leading causes of death worldwide. Therefore, developing and validating automated tools to help identify high-risk patients are of paramount clinical utility. In this article, we tackle this task and introduce a genetic programming algorithm (called GIRAFFE) to build (deep) machine learning classification ensembles for arrhythmia classification from two-dimensional images of 12-lead electrocardiogram (ECG) tracings.
- Categories:
- Read more about [Poster] Contrastive Deep Nonnegative Matrix Factorization For Community Detection
- Log in to post comments
Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection, because of its better interpretability. However, the existing NMF-based methods have the following three problems: 1) they directly transform the original network into community membership space, so it is difficult for them to capture the hierarchical information; 2) they often only pay attention to the topology of the network and ignore its node attributes; 3) it is hard for them to learn the global structure information necessary for community detection.
- Categories:
- Read more about [Poster] Contrastive Deep Nonnegative Matrix Factorization For Community Detection
- Log in to post comments
Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection, because of its better interpretability. However, the existing NMF-based methods have the following three problems: 1) they directly transform the original network into community membership space, so it is difficult for them to capture the hierarchical information; 2) they often only pay attention to the topology of the network and ignore its node attributes; 3) it is hard for them to learn the global structure information necessary for community detection.
ICASSP2024-Poster.pdf
- Categories:
- Read more about Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking Neural Networks: From Algorithms to Technology
- Log in to post comments
Neuromorphic computing and, in particular, spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications, processing static and/or temporal inputs from different sensory modalities, including audio and vision sensors. In this paper, we start with a description of recent advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient spiking neural networks (SNNs) for complex machine learning applications.
- Categories:
- Read more about Training Ultra-Low-Latency Spiking Neural Networks from Scratch
- Log in to post comments
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for SNNs with ultra-low (down to 1) time steps that leverages the Hoyer regularizer. We calculate the threshold for each BANN layer as the Hoyer extremum of a clipped version of its activation map.
- Categories:
- Read more about REGULARIZED CONDITIONAL ALIGNMENT FOR MULTI-DOMAIN TEXT CLASSIFICATION
- Log in to post comments
The most successful multi-domain text classification (MDTC) approaches employ the shared-private paradigm to facilitate the enhancement of domain-invariant features through domain-specific attributes. Additionally, they employ adversarial training to align marginal feature distributions. Nevertheless, these methodologies encounter two primary challenges: (1) Neglecting class-aware information during adversarial alignment poses a risk of misalignment; (2) The limited availability of labeled data across multiple domains fails to ensure adequate discriminative capacity for the model.
- Categories:
- Read more about Generalized Multi-Source Inference for Text Conditioned Music Diffusion Models
- Log in to post comments
Multi-Source Diffusion Models (MSDM) allow for compositional musical generation tasks: generating a set of coherent sources, creating accompaniments, and performing source separation. Despite their versatility, they require estimating the joint distribution over the sources, necessitating pre-separated musical data, which is rarely available, and fixing the number and type of sources at training time. This paper generalizes MSDM to arbitrary time-domain diffusion models conditioned on text embeddings.
- Categories:
- Read more about Learning with Non-Uniform Label Noise: A Cluster-Dependent Weakly Supervised Approach
- Log in to post comments
Learning with noisy labels is a challenging task in machine learning.
Furthermore in reality, label noise can be highly non-uniform
in feature space, e.g. with higher error rate for more difficult samples.
Some recent works consider instance-dependent label noise
but they require additional information such as some cleanly labeled
data and confidence scores, which are usually unavailable or costly
to obtain. In this paper, we consider learning with non-uniform label
noise that requires no such additional information. Inspired by
- Categories: