Sorry, you need to enable JavaScript to visit this website.

facebooktwittermailshare

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother

Abstract: 

This paper is concerned with state estimation at a fixed time point in a given time series of observations of a Boolean dynamical system. Towards this end, we introduce the Boolean Kalman Smoother, which provides an efficient algorithm to compute the optimal MMSE state estimator for this problem. Performance is investigated using a Boolean network model of the p53-MDM2 negative feedback loop gene regulatory network observed through time series of Next-Generation Sequencing (NGS) data.

up
1 user has voted: Mahdi Imani

Paper Details

Authors:
Ulisses Braga-Neto
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Presentation Slides
Event:
Presenter's Name:
Mahdi Imani
Document Year:
2015
Cite

Document Files

Globalsip_presentation_v3.pdf

(623)

Subscribe

[1] Ulisses Braga-Neto, "Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/424. Accessed: Aug. 13, 2020.
@article{424-15,
url = {http://sigport.org/424},
author = {Ulisses Braga-Neto },
publisher = {IEEE SigPort},
title = {Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother},
year = {2015} }
TY - EJOUR
T1 - Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother
AU - Ulisses Braga-Neto
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/424
ER -
Ulisses Braga-Neto. (2015). Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother. IEEE SigPort. http://sigport.org/424
Ulisses Braga-Neto, 2015. Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother. Available at: http://sigport.org/424.
Ulisses Braga-Neto. (2015). "Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother." Web.
1. Ulisses Braga-Neto. Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/424