Sorry, you need to enable JavaScript to visit this website.

The IEEE Global Conference on Signal and Information Processing (GlobalSIP) is a flagship conference of the IEEE Signal Processing Society. GlobalSIP'15 will be held in Orlando, Florida, USA, December 14-16, 2015. The conference will focus on signal and information processing with an emphasis on up-and-coming signal processing themes. The conference will feature world-class speakers, tutorials, exhibits, and sessions consisting of poster or oral presentations. Outstanding papers will be selected for Best Paper Awards or Best Student Paper Awards; a paper is eligible for a best student paper award if the first author of the paper is a student. IEEE Signal Processing Society and National Science Foundation will provide travel grants to eligible students.

In the 1960s, Marshall McLuhan published the book entitled, The Extensions of Man focusing primarily on television, an electronic media as being the outward extension of human nervous system, which from contemporary interpretation marks the previous stage of Big Data.


Heterogeneous processing represents the future of computing, promising to unlock the performance and power efficiency of the parallel computing engines found in most modern electronic devices. This talk will detail the HSA computing platform infrastructure including features/advantages across computing platforms from mobile and tablets to desktops to HPC and servers. The talk will focus on technical issues mapping DSPs to HSA systems using GPT's new DSP processor as a representative example.


In-band full-duplex transmission allows a relay station to theoretically double its spectral efficiency by simultaneously receiving and transmitting in the same frequency band, when compared to the traditional half-duplex or out-of-band full-duplex counterpart. Consequently, the induced self-interference suffered by the relay may reach considerable power levels, which decreases the signal-to-interference-plus-noise ratio (SINR) in a decode-and-forward (DF) relay, leading to a degradation of the relay performance.


Phase synchrony measures computed on electrophysiological signals play an important role in the assessment of cognitive and sensory processes. However, due to the effects of volume conduction false synchronization values may arise between time series. Measures such as the imaginary part of coherence (ImC), phase-lag index (PLI) and an enhanced version of it, the weighted PLI (WPLI) have been proposed in order to attenuate the effects of volume conduction.