Sorry, you need to enable JavaScript to visit this website.

A SEMI-SUPERVISED METHOD FOR MULTI-SUBJECT FMRI FUNCTIONAL ALIGNMENT

Citation Author(s):
Javier S. Turek, Theodore L. Willke, Po-Hsuan Chen, Peter J. Ramadge
Submitted by:
Javier Turek
Last updated:
2 March 2017 - 12:56pm
Document Type:
Poster
Document Year:
2017
Event:
Presenters:
Javier Turek
Paper Code:
3367
 

Practical limitations on the duration of individual fMRI scans have led neuroscientist to consider the aggregation of data from multiple subjects. Differences in anatomical structures and functional topographies of brains require aligning data across subjects. Existing functional alignment methods serve as a preprocessing step that allows subsequent statistical methods to learn from the aggregated multi-subject data. Despite their success, current alignment methods do not leverage the labeled data used in the subsequent methods. In this work we propose a semi-supervised scheme that simultaneously learns the alignment and performs the analysis. We derive a specific instance of the scheme using the Shared Response Model for alignment and Multinomial Logistic Regression for classification. In our experiments this method improves the average classification accuracy from 65.5% to 68.5%, and from 5.3% to 6.1% over the independently-trained methods. Furthermore, our method achieves similar prediction with almost half the samples used for alignment.

up
1 user has voted: Mustafa Salman