Documents
Presentation Slides
Multiscale convolutional neural networks for in-loop video restoration
- Citation Author(s):
- Submitted by:
- Kiran Misra
- Last updated:
- 2 March 2023 - 3:21am
- Document Type:
- Presentation Slides
- Document Year:
- 2023
- Event:
- Presenters:
- Kiran M. Misra
- Paper Code:
- 204
- Categories:
- Log in to post comments
Incorporating neural networks into a video codec as an in-loop filter has been shown to provide significant improvements in coding efficiency. Unfortunately, the computational complexity associated with the neural network, specifically the number of multiply-accumulate (MAC) operations, makes these approaches intractable in practice. In this paper, we consider using a multiscale approach to reduce complexity while maintaining coding efficiency. Experimental results demonstrate a 5.4× reduction in MAC operations while achieving an average bit rate savings of 6.4% and 6.3% for all intra and random access coding, respectively, when compared to the evolving AV2 standard. Ablation studies are also provided and show that the approach achieves all but 0.2% of the coding efficiency of full resolution processing.