Sorry, you need to enable JavaScript to visit this website.

We model the sampling and recovery of clustered graph signals as a reinforcement learning (RL) problem. The signal sampling is carried out by an agent which crawls over the graph and selects the most relevant graph nodes to sample. The goal of the agent is to select signal samples which allow for the most accurate recovery. The sample selection is formulated as a multi-armed bandit (MAB) problem, which lends naturally to learning efficient sampling strategies using the well-known gradient MAB algorithm.

Categories:
82 Views