Sorry, you need to enable JavaScript to visit this website.

Machine Learning for Signal Processing

Sparse Modeling


Sparse Modeling in Image Processing and Deep Learning

Paper Details

Authors:
Michael Elad
Submitted On:
11 October 2017 - 3:05pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

ICIP_KeyNote_Talk_small size.pdf

(48 downloads)

Keywords

Subscribe

[1] Michael Elad, "Sparse Modeling ", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2260. Accessed: Nov. 20, 2017.
@article{2260-17,
url = {http://sigport.org/2260},
author = {Michael Elad },
publisher = {IEEE SigPort},
title = {Sparse Modeling },
year = {2017} }
TY - EJOUR
T1 - Sparse Modeling
AU - Michael Elad
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2260
ER -
Michael Elad. (2017). Sparse Modeling . IEEE SigPort. http://sigport.org/2260
Michael Elad, 2017. Sparse Modeling . Available at: http://sigport.org/2260.
Michael Elad. (2017). "Sparse Modeling ." Web.
1. Michael Elad. Sparse Modeling [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2260

Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins

Paper Details

Authors:
Brayden Hollis, Stacy Patterson, Jeff Trinkle
Submitted On:
14 November 2017 - 12:55pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

GlobalSIP_Poster.pdf

(11 downloads)

Keywords

Subscribe

[1] Brayden Hollis, Stacy Patterson, Jeff Trinkle, "Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2351. Accessed: Nov. 20, 2017.
@article{2351-17,
url = {http://sigport.org/2351},
author = {Brayden Hollis; Stacy Patterson; Jeff Trinkle },
publisher = {IEEE SigPort},
title = {Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins},
year = {2017} }
TY - EJOUR
T1 - Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins
AU - Brayden Hollis; Stacy Patterson; Jeff Trinkle
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2351
ER -
Brayden Hollis, Stacy Patterson, Jeff Trinkle. (2017). Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins. IEEE SigPort. http://sigport.org/2351
Brayden Hollis, Stacy Patterson, Jeff Trinkle, 2017. Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins. Available at: http://sigport.org/2351.
Brayden Hollis, Stacy Patterson, Jeff Trinkle. (2017). "Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins." Web.
1. Brayden Hollis, Stacy Patterson, Jeff Trinkle. Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2351

Cepstrum Coefficients Based Sleep Stage Classification

Paper Details

Authors:
Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek
Submitted On:
14 November 2017 - 10:10am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Cepstrum Coefficients Sleep Classification

(6 downloads)

Keywords

Subscribe

[1] Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek, "Cepstrum Coefficients Based Sleep Stage Classification", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2344. Accessed: Nov. 20, 2017.
@article{2344-17,
url = {http://sigport.org/2344},
author = {Emin Argun Oral; Muhammet Mustafa Codur; Ibrahim Yucel Ozbek },
publisher = {IEEE SigPort},
title = {Cepstrum Coefficients Based Sleep Stage Classification},
year = {2017} }
TY - EJOUR
T1 - Cepstrum Coefficients Based Sleep Stage Classification
AU - Emin Argun Oral; Muhammet Mustafa Codur; Ibrahim Yucel Ozbek
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2344
ER -
Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek. (2017). Cepstrum Coefficients Based Sleep Stage Classification. IEEE SigPort. http://sigport.org/2344
Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek, 2017. Cepstrum Coefficients Based Sleep Stage Classification. Available at: http://sigport.org/2344.
Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek. (2017). "Cepstrum Coefficients Based Sleep Stage Classification." Web.
1. Emin Argun Oral, Muhammet Mustafa Codur, Ibrahim Yucel Ozbek. Cepstrum Coefficients Based Sleep Stage Classification [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2344

COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET

Paper Details

Authors:
A. Omer Saritac, C. Tekin
Submitted On:
14 November 2017 - 7:11am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

presentation_1.pdf

(7 downloads)

Keywords

Subscribe

[1] A. Omer Saritac, C. Tekin, "COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2342. Accessed: Nov. 20, 2017.
@article{2342-17,
url = {http://sigport.org/2342},
author = {A. Omer Saritac; C. Tekin },
publisher = {IEEE SigPort},
title = {COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET},
year = {2017} }
TY - EJOUR
T1 - COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET
AU - A. Omer Saritac; C. Tekin
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2342
ER -
A. Omer Saritac, C. Tekin. (2017). COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET. IEEE SigPort. http://sigport.org/2342
A. Omer Saritac, C. Tekin, 2017. COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET. Available at: http://sigport.org/2342.
A. Omer Saritac, C. Tekin. (2017). "COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET." Web.
1. A. Omer Saritac, C. Tekin. COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2342

Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization


The development of children’s cognitive and perceptual skills depends heavily on object exploration and manipulative experiences. New types of robotic assistive technologies that enable children with disabilities to interact with their environment, which prove to be beneficial for their cognitive and perceptual skills development, have emerged in recent years. In this study, a human-robot interface that uses Event-Related Desynchronization (ERD) brain response during movement was developed.

Paper Details

Authors:
Submitted On:
12 November 2017 - 10:57pm
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

2017 GlobalSIP slide.pdf

(2 downloads)

Keywords

Subscribe

[1] , "Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2317. Accessed: Nov. 20, 2017.
@article{2317-17,
url = {http://sigport.org/2317},
author = { },
publisher = {IEEE SigPort},
title = {Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization},
year = {2017} }
TY - EJOUR
T1 - Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2317
ER -
. (2017). Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization. IEEE SigPort. http://sigport.org/2317
, 2017. Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization. Available at: http://sigport.org/2317.
. (2017). "Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization." Web.
1. . Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2317

End-To-End Chinese Text Recognition

Paper Details

Authors:
Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang
Submitted On:
11 November 2017 - 12:19am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

presentation at GlobalSIP

(257 downloads)

Keywords

Subscribe

[1] Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang, "End-To-End Chinese Text Recognition", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2304. Accessed: Nov. 20, 2017.
@article{2304-17,
url = {http://sigport.org/2304},
author = {Jie Hu; Tszhang Guo; Ji Cao; Changshui Zhang },
publisher = {IEEE SigPort},
title = {End-To-End Chinese Text Recognition},
year = {2017} }
TY - EJOUR
T1 - End-To-End Chinese Text Recognition
AU - Jie Hu; Tszhang Guo; Ji Cao; Changshui Zhang
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2304
ER -
Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang. (2017). End-To-End Chinese Text Recognition. IEEE SigPort. http://sigport.org/2304
Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang, 2017. End-To-End Chinese Text Recognition. Available at: http://sigport.org/2304.
Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang. (2017). "End-To-End Chinese Text Recognition." Web.
1. Jie Hu, Tszhang Guo, Ji Cao, Changshui Zhang. End-To-End Chinese Text Recognition [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2304

Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues

Paper Details

Authors:
QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG
Submitted On:
9 November 2017 - 10:15pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

poster.pdf

(5 downloads)

Keywords

Subscribe

[1] QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG, "Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2280. Accessed: Nov. 20, 2017.
@article{2280-17,
url = {http://sigport.org/2280},
author = {QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG },
publisher = {IEEE SigPort},
title = {Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues},
year = {2017} }
TY - EJOUR
T1 - Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues
AU - QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2280
ER -
QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG. (2017). Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues. IEEE SigPort. http://sigport.org/2280
QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG, 2017. Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues. Available at: http://sigport.org/2280.
QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG. (2017). "Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues." Web.
1. QINGLIANG FAN; WENWEN LEI; XIAP-PING ZHANG. Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2280

TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES


Voxels are an effective approach to 3D mesh and point cloud classification because they build upon mature Convolutional Neural Network concepts. We show however that their cubic increase in dimensionality is unsuitable for more challenging problems such as object detection in a complex point cloud scene. We observe that 3D meshes are analogous to graph data and can thus be treated with graph signal processing techniques.

Paper Details

Authors:
Felipe Petroski Such, Shagan Sah, Raymond Ptucha
Submitted On:
19 September 2017 - 11:34am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIPPoster2017MiguelDominguez.pdf

(37 downloads)

Keywords

Subscribe

[1] Felipe Petroski Such, Shagan Sah, Raymond Ptucha, "TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2234. Accessed: Nov. 20, 2017.
@article{2234-17,
url = {http://sigport.org/2234},
author = {Felipe Petroski Such; Shagan Sah; Raymond Ptucha },
publisher = {IEEE SigPort},
title = {TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES},
year = {2017} }
TY - EJOUR
T1 - TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES
AU - Felipe Petroski Such; Shagan Sah; Raymond Ptucha
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2234
ER -
Felipe Petroski Such, Shagan Sah, Raymond Ptucha. (2017). TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES. IEEE SigPort. http://sigport.org/2234
Felipe Petroski Such, Shagan Sah, Raymond Ptucha, 2017. TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES. Available at: http://sigport.org/2234.
Felipe Petroski Such, Shagan Sah, Raymond Ptucha. (2017). "TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES." Web.
1. Felipe Petroski Such, Shagan Sah, Raymond Ptucha. TOWARDS 3D CONVOLUTIONAL NEURAL NETWORKS WITH MESHES [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2234

Greedy Deep Transform Learning


We introduce deep transform learning – a new
tool for deep learning. Deeper representation is learnt by
stacking one transform after another. The learning proceeds in
a greedy way. The first layer learns the transform and features
from the input training samples. Subsequent layers use the
features (after activation) from the previous layers as training
input. Experiments have been carried out with other deep
representation learning tools – deep dictionary learning,
stacked denoising autoencoder, deep belief network and PCANet

Paper Details

Authors:
Jyoti Maggu, Angshul Majumdar
Submitted On:
18 September 2017 - 1:57pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP_greedyDTL.pdf

(37 downloads)

Keywords

Subscribe

[1] Jyoti Maggu, Angshul Majumdar, "Greedy Deep Transform Learning", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2180. Accessed: Nov. 20, 2017.
@article{2180-17,
url = {http://sigport.org/2180},
author = {Jyoti Maggu; Angshul Majumdar },
publisher = {IEEE SigPort},
title = {Greedy Deep Transform Learning},
year = {2017} }
TY - EJOUR
T1 - Greedy Deep Transform Learning
AU - Jyoti Maggu; Angshul Majumdar
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2180
ER -
Jyoti Maggu, Angshul Majumdar. (2017). Greedy Deep Transform Learning. IEEE SigPort. http://sigport.org/2180
Jyoti Maggu, Angshul Majumdar, 2017. Greedy Deep Transform Learning. Available at: http://sigport.org/2180.
Jyoti Maggu, Angshul Majumdar. (2017). "Greedy Deep Transform Learning." Web.
1. Jyoti Maggu, Angshul Majumdar. Greedy Deep Transform Learning [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2180

AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

Paper Details

Authors:
Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun
Submitted On:
15 September 2017 - 12:21am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster for paper 3030-ICIP2017.pdf

(24 downloads)

Keywords

Subscribe

[1] Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun, "AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2078. Accessed: Nov. 20, 2017.
@article{2078-17,
url = {http://sigport.org/2078},
author = {Xiuyan Li; Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun },
publisher = {IEEE SigPort},
title = {AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY},
year = {2017} }
TY - EJOUR
T1 - AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY
AU - Xiuyan Li; Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2078
ER -
Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun. (2017). AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY. IEEE SigPort. http://sigport.org/2078
Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun, 2017. AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY. Available at: http://sigport.org/2078.
Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun. (2017). "AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY." Web.
1. Xiuyan Li, Yang Lu,Jianming Wang,Xin Dang,Qi Wang,Xiaojie Duan,Yukuan Sun. AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2078

Pages