Sorry, you need to enable JavaScript to visit this website.

Source separation (MLR-SSEP)

A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference

Paper Details

Authors:
Rob A. Rutenbar
Submitted On:
7 March 2017 - 12:55pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ko-icassp2017-poster.pdf

(90 downloads)

Keywords

Subscribe

[1] Rob A. Rutenbar, "A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1652. Accessed: Sep. 20, 2017.
@article{1652-17,
url = {http://sigport.org/1652},
author = {Rob A. Rutenbar },
publisher = {IEEE SigPort},
title = {A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference},
year = {2017} }
TY - EJOUR
T1 - A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference
AU - Rob A. Rutenbar
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1652
ER -
Rob A. Rutenbar. (2017). A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference. IEEE SigPort. http://sigport.org/1652
Rob A. Rutenbar, 2017. A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference. Available at: http://sigport.org/1652.
Rob A. Rutenbar. (2017). "A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference." Web.
1. Rob A. Rutenbar. A Case Study of Machine Learning Hardware: Real-Time Source Separation using Markov Random Fields via Sampling-based Inference [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1652

Learning complex-valued latent filters with absolute cosine similarity

Paper Details

Authors:
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon
Submitted On:
5 March 2017 - 6:10pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

icassp2017_slides.pdf

(61 downloads)

Keywords

Subscribe

[1] Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon, "Learning complex-valued latent filters with absolute cosine similarity", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1641. Accessed: Sep. 20, 2017.
@article{1641-17,
url = {http://sigport.org/1641},
author = {Anh H.T. Nguyen; V.G. Reju; Andy W.H. Khong; and Ing Yann Soon },
publisher = {IEEE SigPort},
title = {Learning complex-valued latent filters with absolute cosine similarity},
year = {2017} }
TY - EJOUR
T1 - Learning complex-valued latent filters with absolute cosine similarity
AU - Anh H.T. Nguyen; V.G. Reju; Andy W.H. Khong; and Ing Yann Soon
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1641
ER -
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. (2017). Learning complex-valued latent filters with absolute cosine similarity. IEEE SigPort. http://sigport.org/1641
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon, 2017. Learning complex-valued latent filters with absolute cosine similarity. Available at: http://sigport.org/1641.
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. (2017). "Learning complex-valued latent filters with absolute cosine similarity." Web.
1. Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. Learning complex-valued latent filters with absolute cosine similarity [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1641

Learning complex-valued latent filters with absolute cosine similarity


We propose a new sparse coding technique based on the power mean of phase-invariant cosine distances. Our approach is a generalization of sparse filtering and K-hyperlines clustering. It offers a better sparsity enforcer than the L1/L2 norm ratio that is typically used in sparse filtering. At the same time, the proposed approach scales better than the clustering counter parts for high-dimensional input. Our algorithm fully exploits the prior information obtained by preprocessing the observed data with whitening via an efficient row-wise decoupling scheme.

Paper Details

Authors:
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon
Submitted On:
5 March 2017 - 6:10pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

AnhHTNguyen_icassp2017_poster.pdf

(56 downloads)

Keywords

Subscribe

[1] Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon, "Learning complex-valued latent filters with absolute cosine similarity", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1640. Accessed: Sep. 20, 2017.
@article{1640-17,
url = {http://sigport.org/1640},
author = {Anh H.T. Nguyen; V.G. Reju; Andy W.H. Khong; and Ing Yann Soon },
publisher = {IEEE SigPort},
title = {Learning complex-valued latent filters with absolute cosine similarity},
year = {2017} }
TY - EJOUR
T1 - Learning complex-valued latent filters with absolute cosine similarity
AU - Anh H.T. Nguyen; V.G. Reju; Andy W.H. Khong; and Ing Yann Soon
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1640
ER -
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. (2017). Learning complex-valued latent filters with absolute cosine similarity. IEEE SigPort. http://sigport.org/1640
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon, 2017. Learning complex-valued latent filters with absolute cosine similarity. Available at: http://sigport.org/1640.
Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. (2017). "Learning complex-valued latent filters with absolute cosine similarity." Web.
1. Anh H.T. Nguyen, V.G. Reju, Andy W.H. Khong, and Ing Yann Soon. Learning complex-valued latent filters with absolute cosine similarity [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1640

LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS


Sound source separation at low-latency requires that each in- coming frame of audio data be processed at very low de- lay, and outputted as soon as possible. For practical pur- poses involving human listeners, a 20 ms algorithmic delay is the uppermost limit which is comfortable to the listener. In this paper, we propose a low-latency (algorithmic delay ≤ 20 ms) deep neural network (DNN) based source sepa- ration method.

Paper Details

Authors:
Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen
Submitted On:
8 December 2016 - 3:27pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

GlobalSIP_poster2.pdf

(157 downloads)

Keywords

Subscribe

[1] Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen, "LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/1426. Accessed: Sep. 20, 2017.
@article{1426-16,
url = {http://sigport.org/1426},
author = {Tom Barker; Niels Henrik Pontoppidan; Tuomas Virtanen },
publisher = {IEEE SigPort},
title = {LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS},
year = {2016} }
TY - EJOUR
T1 - LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS
AU - Tom Barker; Niels Henrik Pontoppidan; Tuomas Virtanen
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/1426
ER -
Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen. (2016). LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS. IEEE SigPort. http://sigport.org/1426
Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen, 2016. LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS. Available at: http://sigport.org/1426.
Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen. (2016). "LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS." Web.
1. Tom Barker, Niels Henrik Pontoppidan, Tuomas Virtanen. LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL NETWORKS [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/1426

COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION


Coupled decompositions of multiple tensors are fundamental tools for multi-set data fusion. In this paper, we introduce a coupled version of the rank-(Lm, Ln, ·) block term decomposition (BTD), applicable to joint independent
subspace analysis. We propose two algorithms for its computation based on a coupled block simultaneous generalized Schur decomposition scheme. Numerical results are given to show the performance of the proposed algorithms.

Paper Details

Authors:
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer
Submitted On:
22 March 2016 - 3:28am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP2016-POSTER_GONGXIAOFENG.pdf

(177 downloads)

Keywords

Subscribe

[1] Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer, "COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/959. Accessed: Sep. 20, 2017.
@article{959-16,
url = {http://sigport.org/959},
author = {Xiao-Feng Gong; Qiu-Hua Lin; Otto Debals; Nico Vervliet; Lieven De Lathauwer },
publisher = {IEEE SigPort},
title = {COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION},
year = {2016} }
TY - EJOUR
T1 - COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION
AU - Xiao-Feng Gong; Qiu-Hua Lin; Otto Debals; Nico Vervliet; Lieven De Lathauwer
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/959
ER -
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. (2016). COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION. IEEE SigPort. http://sigport.org/959
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer, 2016. COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION. Available at: http://sigport.org/959.
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. (2016). "COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION." Web.
1. Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/959

A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS

Paper Details

Authors:
Bin Yang
Submitted On:
21 March 2016 - 9:56am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster.pdf

(188 downloads)

Keywords

Subscribe

[1] Bin Yang, "A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/926. Accessed: Sep. 20, 2017.
@article{926-16,
url = {http://sigport.org/926},
author = {Bin Yang },
publisher = {IEEE SigPort},
title = {A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS},
year = {2016} }
TY - EJOUR
T1 - A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS
AU - Bin Yang
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/926
ER -
Bin Yang. (2016). A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS. IEEE SigPort. http://sigport.org/926
Bin Yang, 2016. A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS. Available at: http://sigport.org/926.
Bin Yang. (2016). "A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS." Web.
1. Bin Yang. A NOVEL DNN-HMM-BASED APPROACH FOR EXTRACTING SINGLE LOADS FROM AGGREGATE POWER SIGNALS [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/926

COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION

Paper Details

Authors:
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer
Submitted On:
22 March 2016 - 3:28am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

ICASSP2016-POSTER_GONG.pdf

(159 downloads)

Keywords

Subscribe

[1] Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer, "COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/821. Accessed: Sep. 20, 2017.
@article{821-16,
url = {http://sigport.org/821},
author = {Xiao-Feng Gong; Qiu-Hua Lin; Otto Debals; Nico Vervliet; Lieven De Lathauwer },
publisher = {IEEE SigPort},
title = {COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION},
year = {2016} }
TY - EJOUR
T1 - COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION
AU - Xiao-Feng Gong; Qiu-Hua Lin; Otto Debals; Nico Vervliet; Lieven De Lathauwer
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/821
ER -
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. (2016). COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION. IEEE SigPort. http://sigport.org/821
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer, 2016. COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION. Available at: http://sigport.org/821.
Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. (2016). "COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION." Web.
1. Xiao-Feng Gong, Qiu-Hua Lin, Otto Debals, Nico Vervliet, Lieven De Lathauwer. COUPLED RANK-(Lm, Ln, ∙) BLOCK TERM DECOMPOSITION BY COUPLED BLOCK SIMULTANEOUS GENERALIZED SCHUR DECOMPOSITION [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/821

Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing


Load disaggregation-Alireza Rahimpour-Global SIP 2015

Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving high efficiency in energy consumption.

Paper Details

Authors:
Hairong Qi, David Fugatey, Teja Kuruganti
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

GSIP2015-ALIREZA RAHIMPOUR.pdf

(273 downloads)

Keywords

Subscribe

[1] Hairong Qi, David Fugatey, Teja Kuruganti, "Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/504. Accessed: Sep. 20, 2017.
@article{504-15,
url = {http://sigport.org/504},
author = {Hairong Qi; David Fugatey; Teja Kuruganti },
publisher = {IEEE SigPort},
title = {Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing},
year = {2015} }
TY - EJOUR
T1 - Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing
AU - Hairong Qi; David Fugatey; Teja Kuruganti
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/504
ER -
Hairong Qi, David Fugatey, Teja Kuruganti. (2015). Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing. IEEE SigPort. http://sigport.org/504
Hairong Qi, David Fugatey, Teja Kuruganti, 2015. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing. Available at: http://sigport.org/504.
Hairong Qi, David Fugatey, Teja Kuruganti. (2015). "Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing." Web.
1. Hairong Qi, David Fugatey, Teja Kuruganti. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/504