Documents
Presentation Slides
Hyperspectral Image Super-resolution with Deep Priors and Degradation Model Inversion
- Citation Author(s):
- Submitted by:
- Xiuheng Wang
- Last updated:
- 9 May 2022 - 3:19am
- Document Type:
- Presentation Slides
- Event:
- Presenters:
- Xiuheng Wang
- Paper Code:
- IVMSP-41.5
- Categories:
- Log in to post comments
To overcome inherent hardware limitations of hyperspectral imaging systems with respect to their spatial resolution, fusion-based hyperspectral image (HSI) super-resolution is attracting increasing attention. This technique aims to fuse a low-resolution (LR) HSI and a conventional high-resolution (HR) RGB image in order to obtain an HR HSI. Recently, deep learning architectures have been used to address the HSI super-resolution problem and have achieved remarkable performance. However, they ignore the degradation model even though this model has a clear physical interpretation and may contribute to improving the performance. We address this problem by proposing a method that, on the one hand, makes use of the linear degradation model in the data-fidelity term of the objective function and, on the other hand, utilizes the output of a convolutional neural network for designing a deep prior regularizer in spectral and spatial gradient domains. Experiments show the performance improvement achieved with this strategy.