Sorry, you need to enable JavaScript to visit this website.

The problem of maximizing the information flow through a sensor network tasked with an inference objective at the fusion center is considered. The sensor nodes take observations, compress, and send them to the fusion center through a network of relays. The network imposes capacity constraints on the rate of transmission in each connection and flow conservation constraints. It is shown that this rate-constrained inference problem can be cast as a Network Utility Maximization problem by suitably defining the utility functions for each sensor, and can be solved using existing techniques.

Categories:
10 Views

Automobiles have become an essential part of everyday lives. In this work, we attempt to make them smarter by introducing the idea of in-car driver authentication using wireless sensing. Our aim is to develop a model which can recognize drivers automatically. Firstly, we address the problem of "changing in-car environments", where the existing wireless sensing based human identification system fails. To this end, we build the first in-car driver radio biometric dataset to understand the effect of changing environments on human radio biometrics.

Categories:
39 Views

A sensor network wishes to transmit information to a fusion center to allow it to detect a public hypothesis, but at the same time prevent it from inferring a private hypothesis. We propose a multilayer sensor network structure, where each sensor first applies a nonlinear fusion function on the information it receives from sensors in a previous layer, and then a linear weighting matrix to distort the information it sends to sensors in the next layer.

Categories:
7 Views