Documents
Poster
Poster
Recurrent Neural Networks with Stochastic Layers for Acoustic Novelty Detection
- Citation Author(s):
- Submitted by:
- Duong Nguyen
- Last updated:
- 9 May 2019 - 6:26am
- Document Type:
- Poster
- Document Year:
- 2019
- Event:
- Presenters:
- Duong Nguyen
- Paper Code:
- AASP-P11.10
- Categories:
- Log in to post comments
In this paper, we adapt Recurrent Neural Networks with Stochastic Layers, which are the state-of-the-art for generating text, music and speech, to the problem of acoustic novelty detection. By integrating uncertainty into the hidden states, this type of network is able to learn the distribution of complex sequences. Because the learned distribution can be calculated explicitly in terms of probability, we can evaluate how likely an observation is then detect low-probability events as novel. The model is robust, highly unsupervised, end-to-end and requires minimum preprocessing, feature engineering or hyperparameter tuning. An experiment on a benchmark dataset shows that our model outperforms the state-of-the-art acoustic novelty detectors.