- Read more about Compressive Sensing via Unfolded ℓ_0-Constrained Convolutional Sparse Coding
- Log in to post comments
DCC的副本.pdf
- Categories:
- Read more about Reweighted Block-Based Compressed Sensing Using Singular Value Decomposition
- Log in to post comments
Existed inherent sparsity of natural images in some domains helps to reconstruct the signal with a lower number of measurements. To benefit from the sparsity, one should solve the reweighted $\ell_{1}$-norm minimization algorithms. Although, the existed reweighted $\ell_{1}$-norm minimization approaches work well for k-sparse signals, but, the performance of these methods for compressible signals are not competitive with unweighted one.
poster.pdf
- Categories:
Recently, multidimensional signal reconstruction using a low number of measurements is of great interest. Therefore, an effective sampling scheme which should acquire the most information of signal using a low number of measurements is required. In this paper, we study a novel cube-based method for sampling and reconstruction of multidimensional signals. First, inspired by the block-based compressive sensing (BCS), we divide a group of pictures (GoP) in a video sequence into cubes. By this way, we can easily store the measurement matrix and also easily can generate the sparsifying basis.
poster.pdf
- Categories:
- Read more about Optimal Stochastic Power Control with Compressive CSI Acquisition for Cloud-RAN
- Log in to post comments
This paper considers the channel state information (CSI) acquisition and exploitation problem in cloud radio access networks (Cloud-RAN). A novel CSI acquisition method, called compressive CSI acquisition, is adopted to effectively reduce the CSI signaling overhead by obtaining instantaneous coefficients of only a subset of all the channel links.To deal with the uncertainty in available CSI, we propose a stochastic power control (SPC) framework, which is a highly intractable joint chance constrained program (JCCP).
- Categories: