Sorry, you need to enable JavaScript to visit this website.

Visual light photography, infrared reflectography, ultraviolet fluorescence photography and x-radiography reveal even hidden compositional layers in paintings. To investigate the connections between these images, a multi-modal registration is essential. Due to varying image resolutions, modality dependent image content and depiction styles, registration poses a challenge. Historical paintings usually show crack structures called craquelure in the paint.


Automatic License Plate Recognition (ALPR) for years has remained a persistent topic of research due to numerous practicable applications, especially in the Intelligent Transportation system (ITS). Many currently available solutions are still not robust in various real-world circumstances and often impose constraints like fixed backgrounds and constant distance and camera angles. This paper presents an efficient multi-language repudiate ALPR system based on machine learning.