Sorry, you need to enable JavaScript to visit this website.

In this paper, we present an automated system for robust biometric recognition based upon sparse representation and dictionary learning. In sparse representation, extracted features from the training data are used to develop a dictionary. Training data of real world applications are likely to be exposed to geometric transformations, which is a big challenge for designing of discriminative dictionaries. Classification is achieved by representing the extracted features of the test data as a linear combination of entries in the dictionary.

Categories:
4 Views

Pages