Sorry, you need to enable JavaScript to visit this website.

In this paper we consider Millimeter wave (mmWave) Massive MIMO systems where a large antenna array at the base station (BS) serves a few scheduled terminals. The high dimensional null space of the channel matrix to the scheduled terminals is utilized to broadcast system information to the non-scheduled terminals on the same time-frequency resource.

Categories:
31 Views

In this paper we consider Millimeter wave (mmWave) Massive MIMO systems where a large antenna array at the base station (BS) serves a few scheduled terminals. The high dimensional null space of the channel matrix to the scheduled terminals is utilized to broadcast system information to the non-scheduled terminals on the same time-frequency resource.

Categories:
9 Views

Abstract—This work deals with hybrid beamforming (HBF)
for the MIMO Interfering Broadcast Channel (IBC), i.e. the
Multi-Input Multi-Output (MIMO) Multi-User (MU) Multi-Cell
downlink channel. HBF is a low complexity alternative to fully
digital precoding in Massive MIMO systems. Hybrid architectures
involve a combination of digital and analog processing that
enables both beamforming and multiplexing gains. We consider
BF design by maximizing the Weighted Sum Rate (WSR) for
the case of Perfect Channel State Information at the Transmitter

Categories:
9 Views

We consider a single cell downlink (DL) massive multiple-input multiple-output (MIMO) set-up with user clustering based on statistical information. The problem is to design a fully digital two-stage beamforming aiming to reduce the complexity involved in the conventional MIMO processing. The fully digital two-stage beamforming consists of a slow varying channel statistics based outer beamformer (OBF) and an inner beamformer (IBF) accounting for fast channel variations.

Categories:
19 Views

In this work, we consider multi-group multicast transmissions with different types of service messages in an overloaded multicarrier system, where the number of transmitter antennas is insufficient to mitigate all inter-group interference. We show that employing a rate-splitting based multiuser beamforming approach enables a simultaneous delivery of the multiple service messages over the same time-frequency resources in a non-orthogonal fashion.

Categories:
3 Views

In this work, we consider multi-group multicast transmissions with different types of service messages in an overloaded multicarrier system, where the number of transmitter antennas is insufficient to mitigate all inter-group interference. We show that employing a rate-splitting based multiuser beamforming approach enables a simultaneous delivery of the multiple service messages over the same time-frequency resources in a non-orthogonal fashion.

Categories:
21 Views

In a superimposed unicast and multicast transmission system, one layer of Successive Interference Cancellation (SIC) is required at each receiver to remove the multicast stream before decoding the unicast stream. In this paper, we show that a linearly-precoded Rate-Splitting (RS) strategy at the transmitter can efficiently exploit this existing SIC receiver architecture.

Categories:
8 Views

In this paper, we address the symbol level precoding (SLP) design problem under max-min SINR criterion in the downlink of multiuser multiple-input single-output (MISO) channels. First, we show that the distance preserving constructive interference regions (DPCIR) are always polyhedral angles (shifted pointed cones) for any given constellation point with unbounded decision region. Then we prove that any signal in a given unbounded DPCIR has a norm larger than the norm of the corresponding vertex if and only if the convex hull of the constellation contains the origin.

Categories:
15 Views

Pages