Sorry, you need to enable JavaScript to visit this website.

In this paper we consider a massive multiple-input multiple output (MIMO) communication system using 5G New Radio compliant

Categories:
18 Views

Large-scale multiple-antenna systems have been identified as a promising technology for the next generation of wireless systems. However, by scaling up the number of receive antennas the energy consumption will also increase. One possible solution is to use low-resolution analog-to-digital converters at the receiver. This paper considers large-scale multiple-antenna uplink systems with 1-bit analog-to-digital converters on each receive antenna.

Categories:
19 Views

This paper develops a method for constructing an OFDM signal from a pair of complementary sequences so that the resulting signal is constant-modulus. A recursive method of constructing complementary sequences is developed such that the length of the signal grows linearly with the number of information symbols encoded. The constant-modulus property is exploited at each stage of the backwards symbol-decoding iteration through simple means to progressively reduce noise.

Categories:
23 Views

Usage of passive intelligent surface (PIS) is emerging as a low-cost green alternative to massive antenna systems for realizing high energy beamforming (EB) gains. To maximize its realistic utility, we present a novel channel estimation (CE) protocol for PIS-assisted energy transfer (PET) from a multiantenna power beacon (PB) to a single-antenna energy harvesting (EH) user. Noting the practical limitations of PIS and EH user, all computations are carried out at PB having required active components and radio resources.

Categories:
116 Views

Compressed sensing (CS)-based beam alignment is a promising solution for rapid link configuration in millimeter wave (mmWave)

Categories:
75 Views

Millimeter wave (mmWave) massive multiple input multiple output (MIMO) systems realizing directive beamforming require reliable estimation of the wireless propagation channel. However, mmWave channels are characterized by high variability that severely challenges their recovery over short training periods. Current channel estimation techniques exploit either the channel sparsity in the beamspace domain or its low-rank property in the antenna domain, nevertheless, they still require large numbers of training symbols for the satisfactory performance.

Categories:
168 Views

Partially connected hybrid beamforming (HBF) is a promising approach to alleviate the implementation of large scale millimeter-wave multiple-input multiple-output (MIMO) systems. In this paper, we develop rate maximizing algorithms for the full array- and subarray-based processing strategies of partially connected HBF. We formulate the rate maximization problem as a weighted mean square error minimization problem and use alternating optimization to tackle it.

Categories:
39 Views

We study a cooperative transmission scheme for a joint multiple-input-multiple-output (MIMO) radar and multi-user (MU) MIMO downlink communication system, where both systems operate on the same frequency band simultaneously. Maximization of the total weighted system mutual information or sum rate is considered with the presence of an extended target and environmental clutter. An alternating optimization based iterative algorithm is proposed to find the transmit covariance matrices for both radar and communication applications.

Categories:
33 Views

To satisfy the increasing consumer demand for mobile data,
regulatory bodies have set forward to allow commercial
wireless systems to operate on spectrum bands that until
recently were reserved for military radar. Such co-existence
would require mechanisms for controlling the interference.
One such mechanism is to assign a precoder to the communication
system, designed to meet certain interference related
objectives. This paper looks into whether the implicit radar
information contained in such precoder can be exploited by

Categories:
33 Views

Pages