Sorry, you need to enable JavaScript to visit this website.

This research aims to develop energy-efficient hardware accelerators for Simultaneous Location And Mapping (SLAM) back end applications by employing algorithm-hardware co-design. Utilizing the iSAM2 algorithm, which uses graphical modeling to solve iterative Gauss-Newton problems, we continuously update maps by incorporating solutions from previous iterations or timesteps. We address the performance bottleneck arising from memory writes of intermediate results by modifying the original algorithm. Additionally, we analyze the algorithm's parallelizability to meet latency demands.

Categories:
23 Views

Low-precision formats have proven to be an efficient way to reduce not only the memory footprint but also the hardware resources and power consumption of deep learning computations. Under this premise, the posit numerical format appears to be a highly viable substitute for the IEEE floating-point, but its application to neural networks training still requires further research. Some preliminary results have shown that 8-bit (and even smaller) posits may be used for inference and 16-bit for training, while maintaining the model accuracy.

Categories:
1 Views

With the advent of Big Data application domains, several Machine Learning (ML) signal-processing algorithms such as Convolutional Neural Networks (CNNs) are required to process progressively larger datasets at a great cost in terms of both compute power and memory bandwidth. Although dedicated accelerators have been developed targeting this issue, they usually require moving massive amounts of data across the memory hierarchy to the processing cores and low-level knowledge of how data is stored in the memory devices to enable in-/near-memory processing solutions.

Categories:
21 Views

SC-Flip (SCF) decoding is a low-complexity polar code decoding algorithm alternative to SC-List (SCL) algorithm with small list sizes. To achieve the performance of the SCL algorithm with large list sizes, the Dynamic SC-Flip (DSCF) algorithm was proposed. However, DSCF involves logarithmic and exponential computations that are not suitable for practical hardware implementations. In this work, we propose a simple approximation that replaces the transcendental computations of DSCF decoding. Moreover, we show how to incorporate fast decoding techniques with the DSCF algorithm.

Categories:
50 Views

Custom hardware accelerators of Convolutional Neural Networks (CNN) provide a promising solution to meet real-time constraints for a wide range of applications on low-cost embedded devices. In this work, we aim to lower the dynamic power of a stream-based CNN hardware accelerator by reducing the computational redundancies in the CNN layers. In particular, we investigate the redundancies due to the downsampling effect of max pooling layers which are prevalent in state-of-the-art CNNs, and propose an approximation method to reduce the overall computations.

Categories:
73 Views

Pages