Sorry, you need to enable JavaScript to visit this website.

Applications of Sensor Array and Multi-channel Signal Processing

Simplified 2D mmWave Near-Field Imaging


In this tutorial, simplified signal processing techniques for near-field 2-D image formation is introduced and the specifications of the recorded SAR data samples are detailed.

The source code and example data set can be accessed via the following links:

Paper Details

Authors:
Murat Torlak
Submitted On:
27 November 2019 - 1:29am
Short Link:
Type:
Document Year:
Cite

Document Files

SAR_Imaging_Tutorial.pdf

(7)

Subscribe

[1] Murat Torlak, "Simplified 2D mmWave Near-Field Imaging", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4962. Accessed: Dec. 08, 2019.
@article{4962-19,
url = {http://sigport.org/4962},
author = {Murat Torlak },
publisher = {IEEE SigPort},
title = {Simplified 2D mmWave Near-Field Imaging},
year = {2019} }
TY - EJOUR
T1 - Simplified 2D mmWave Near-Field Imaging
AU - Murat Torlak
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4962
ER -
Murat Torlak. (2019). Simplified 2D mmWave Near-Field Imaging. IEEE SigPort. http://sigport.org/4962
Murat Torlak, 2019. Simplified 2D mmWave Near-Field Imaging. Available at: http://sigport.org/4962.
Murat Torlak. (2019). "Simplified 2D mmWave Near-Field Imaging." Web.
1. Murat Torlak. Simplified 2D mmWave Near-Field Imaging [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4962

3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors


Integration of multi-chip cascaded multiple-input multiple-output (MIMO) millimeter-wave (mmWave) sensors with synthetic aperture radar (SAR) imaging will enable cost-effective and scalable solutions for a variety of applications including security, automotive, and surveillance. In this paper, the first three-dimensional (3-D) holographic MIMO-SAR imaging system using cascaded mmWave sensors is designed and implemented. The challenges imposed by the use of cascaded mmWave sensors in high-resolution MIMO-SAR imaging systems are discussed.

Paper Details

Authors:
Dan Wang, Murat Torlak
Submitted On:
27 November 2019 - 1:14am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors.pdf

(22)

Subscribe

[1] Dan Wang, Murat Torlak, "3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4947. Accessed: Dec. 08, 2019.
@article{4947-19,
url = {http://sigport.org/4947},
author = {Dan Wang; Murat Torlak },
publisher = {IEEE SigPort},
title = {3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors},
year = {2019} }
TY - EJOUR
T1 - 3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors
AU - Dan Wang; Murat Torlak
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4947
ER -
Dan Wang, Murat Torlak. (2019). 3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors. IEEE SigPort. http://sigport.org/4947
Dan Wang, Murat Torlak, 2019. 3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors. Available at: http://sigport.org/4947.
Dan Wang, Murat Torlak. (2019). "3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors." Web.
1. Dan Wang, Murat Torlak. 3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4947

Exploiting Structural Information in Camera Aided Radar Parameter Estimation


The sparse nature of the ranging and spatial angle
parameter space has been exploited by many radar parameter
estimation algorithms in literature. We note that real world
reflections are not sporadically sparse in the parameter space and
typically exhibit smooth variation effects with non-zero entries
occurring in clusters. In this paper, we explicitly model this
additional structural information into our estimation algorithm
and propose a non-convex regularization of the linear observation

Paper Details

Authors:
Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath
Submitted On:
11 November 2019 - 11:28am
Short Link:
Type:
Event:
Document Year:
Cite

Document Files

Exploiting Structural Information in Camera Aided Radar Parameter Estimation.pdf

(11)

Subscribe

[1] Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath , "Exploiting Structural Information in Camera Aided Radar Parameter Estimation", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4945. Accessed: Dec. 08, 2019.
@article{4945-19,
url = {http://sigport.org/4945},
author = {Khurram Usman Mazher; Ramakrishna Sai Annaluru; Amine Mezghani; Robert Heath },
publisher = {IEEE SigPort},
title = {Exploiting Structural Information in Camera Aided Radar Parameter Estimation},
year = {2019} }
TY - EJOUR
T1 - Exploiting Structural Information in Camera Aided Radar Parameter Estimation
AU - Khurram Usman Mazher; Ramakrishna Sai Annaluru; Amine Mezghani; Robert Heath
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4945
ER -
Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath . (2019). Exploiting Structural Information in Camera Aided Radar Parameter Estimation. IEEE SigPort. http://sigport.org/4945
Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath , 2019. Exploiting Structural Information in Camera Aided Radar Parameter Estimation. Available at: http://sigport.org/4945.
Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath . (2019). "Exploiting Structural Information in Camera Aided Radar Parameter Estimation." Web.
1. Khurram Usman Mazher, Ramakrishna Sai Annaluru, Amine Mezghani, Robert Heath . Exploiting Structural Information in Camera Aided Radar Parameter Estimation [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4945

Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging


We propose a new sampling and reconstruction framework for full frame depth imaging using synchronised, programmable laser diode and photon detector arrays. By adopting a measurement scheme that probes the environment with sparse, pseudo-random patterns, our method enables eyesafe LiDAR operation, while guaranteeing fast reconstruction of

Paper Details

Authors:
Brian Stewart, Joao F.C. Mota, Andrew M. Wallace
Submitted On:
8 November 2019 - 6:40am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

SuperPixel LiDAR GlobalSIP19 print.pdf

(18)

Subscribe

[1] Brian Stewart, Joao F.C. Mota, Andrew M. Wallace, "Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4930. Accessed: Dec. 08, 2019.
@article{4930-19,
url = {http://sigport.org/4930},
author = {Brian Stewart; Joao F.C. Mota; Andrew M. Wallace },
publisher = {IEEE SigPort},
title = {Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging},
year = {2019} }
TY - EJOUR
T1 - Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging
AU - Brian Stewart; Joao F.C. Mota; Andrew M. Wallace
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4930
ER -
Brian Stewart, Joao F.C. Mota, Andrew M. Wallace. (2019). Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging. IEEE SigPort. http://sigport.org/4930
Brian Stewart, Joao F.C. Mota, Andrew M. Wallace, 2019. Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging. Available at: http://sigport.org/4930.
Brian Stewart, Joao F.C. Mota, Andrew M. Wallace. (2019). "Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging." Web.
1. Brian Stewart, Joao F.C. Mota, Andrew M. Wallace. Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4930

KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION


This paper presents the KPSNet, a KeyPoint Siamese Network to simultaneously learn task-desirable keypoint detector and feature extractor. The keypoint detector is optimized to predict a score vector, which signifies the probability of each candidate being a keypoint. The feature extractor is optimized to learn robust features of keypoints by exploiting the correspondence between the keypoints generated from two inputs, respectively. For training, the KPSNet does not require to manually annotate keypoints and local patches pairwise.

Paper Details

Authors:
Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu
Submitted On:
16 September 2019 - 9:58pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP.pdf

(18)

Subscribe

[1] Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu, "KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4648. Accessed: Dec. 08, 2019.
@article{4648-19,
url = {http://sigport.org/4648},
author = {Xiaoshui Huang; Jian Zhang; Lingxiang Yao; Qiang Wu },
publisher = {IEEE SigPort},
title = {KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION},
year = {2019} }
TY - EJOUR
T1 - KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION
AU - Xiaoshui Huang; Jian Zhang; Lingxiang Yao; Qiang Wu
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4648
ER -
Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu. (2019). KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION. IEEE SigPort. http://sigport.org/4648
Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu, 2019. KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION. Available at: http://sigport.org/4648.
Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu. (2019). "KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION." Web.
1. Xiaoshui Huang, Jian Zhang, Lingxiang Yao, Qiang Wu. KPSNET: KEYPOINT DETECTION AND FEATURE EXTRACTION FOR POINT CLOUD REGISTRATION [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4648

MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION

Paper Details

Authors:
Tong Wei, Huiping Huang, Bin Liao
Submitted On:
8 May 2019 - 3:22am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP2019_TongWei.pdf

(42)

Subscribe

[1] Tong Wei, Huiping Huang, Bin Liao, "MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4034. Accessed: Dec. 08, 2019.
@article{4034-19,
url = {http://sigport.org/4034},
author = {Tong Wei; Huiping Huang; Bin Liao },
publisher = {IEEE SigPort},
title = {MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION},
year = {2019} }
TY - EJOUR
T1 - MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION
AU - Tong Wei; Huiping Huang; Bin Liao
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4034
ER -
Tong Wei, Huiping Huang, Bin Liao. (2019). MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION. IEEE SigPort. http://sigport.org/4034
Tong Wei, Huiping Huang, Bin Liao, 2019. MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION. Available at: http://sigport.org/4034.
Tong Wei, Huiping Huang, Bin Liao. (2019). "MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION." Web.
1. Tong Wei, Huiping Huang, Bin Liao. MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM DESIGN FOR TARGET LOCALIZATION [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4034

TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS


This paper investigates time-of-arrival (TOA) source node self-positioning with unknown clock skews in wireless sensor networks. For the source-to-anchor direction, source node clock skew does not affect the localization performance. When synchronized anchor nodes simultaneously transmit signals to a source node,the source node clock skew will degrade the localization performance.

Paper Details

Authors:
Submitted On:
7 May 2019 - 9:56pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

conference_poster_4.pdf

(38)

Subscribe

[1] , "TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/3988. Accessed: Dec. 08, 2019.
@article{3988-19,
url = {http://sigport.org/3988},
author = { },
publisher = {IEEE SigPort},
title = {TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS},
year = {2019} }
TY - EJOUR
T1 - TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS
AU -
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/3988
ER -
. (2019). TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS. IEEE SigPort. http://sigport.org/3988
, 2019. TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS. Available at: http://sigport.org/3988.
. (2019). "TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS." Web.
1. . TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK SKEW IN WIRELESS SENSOR NETWORKS [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/3988

Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking

Paper Details

Authors:
Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa
Submitted On:
7 May 2019 - 1:01pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster in pdf format

(51)

Subscribe

[1] Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa, "Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/3924. Accessed: Dec. 08, 2019.
@article{3924-19,
url = {http://sigport.org/3924},
author = {Stefano Savazzi; Vittorio Rampa; Sanaz Kianoush; Alberto Minora; Leonardo Costa },
publisher = {IEEE SigPort},
title = {Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking},
year = {2019} }
TY - EJOUR
T1 - Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking
AU - Stefano Savazzi; Vittorio Rampa; Sanaz Kianoush; Alberto Minora; Leonardo Costa
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/3924
ER -
Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa. (2019). Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking. IEEE SigPort. http://sigport.org/3924
Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa, 2019. Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking. Available at: http://sigport.org/3924.
Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa. (2019). "Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking." Web.
1. Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa. Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/3924

TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM


We study a cooperative transmission scheme for a joint multiple-input-multiple-output (MIMO) radar and multi-user (MU) MIMO downlink communication system, where both systems operate on the same frequency band simultaneously. Maximization of the total weighted system mutual information or sum rate is considered with the presence of an extended target and environmental clutter. An alternating optimization based iterative algorithm is proposed to find the transmit covariance matrices for both radar and communication applications.

Paper Details

Authors:
Mohammad Saquib
Submitted On:
2 December 2018 - 6:45pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

GlobalSIP.pdf

(680)

Subscribe

[1] Mohammad Saquib, "TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3838. Accessed: Dec. 08, 2019.
@article{3838-18,
url = {http://sigport.org/3838},
author = {Mohammad Saquib },
publisher = {IEEE SigPort},
title = {TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM},
year = {2018} }
TY - EJOUR
T1 - TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM
AU - Mohammad Saquib
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3838
ER -
Mohammad Saquib. (2018). TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM. IEEE SigPort. http://sigport.org/3838
Mohammad Saquib, 2018. TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM. Available at: http://sigport.org/3838.
Mohammad Saquib. (2018). "TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM." Web.
1. Mohammad Saquib. TRANSMISSION DESIGN FOR A JOINT MIMO RADAR AND MU-MIMO DOWNLINK COMMUNICATION SYSTEM [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3838

Blind Co-Channel Source Separation in Sparse Interferometric Arrays

Paper Details

Authors:
Ben A. Johnson, Douglas A. Schuyler
Submitted On:
21 November 2018 - 5:28pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Blind_Co-Channel_Source_Separation_in_Sparse_Interferometric_Arrays.pdf

(79)

Subscribe

[1] Ben A. Johnson, Douglas A. Schuyler, "Blind Co-Channel Source Separation in Sparse Interferometric Arrays", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3704. Accessed: Dec. 08, 2019.
@article{3704-18,
url = {http://sigport.org/3704},
author = {Ben A. Johnson; Douglas A. Schuyler },
publisher = {IEEE SigPort},
title = {Blind Co-Channel Source Separation in Sparse Interferometric Arrays},
year = {2018} }
TY - EJOUR
T1 - Blind Co-Channel Source Separation in Sparse Interferometric Arrays
AU - Ben A. Johnson; Douglas A. Schuyler
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3704
ER -
Ben A. Johnson, Douglas A. Schuyler. (2018). Blind Co-Channel Source Separation in Sparse Interferometric Arrays. IEEE SigPort. http://sigport.org/3704
Ben A. Johnson, Douglas A. Schuyler, 2018. Blind Co-Channel Source Separation in Sparse Interferometric Arrays. Available at: http://sigport.org/3704.
Ben A. Johnson, Douglas A. Schuyler. (2018). "Blind Co-Channel Source Separation in Sparse Interferometric Arrays." Web.
1. Ben A. Johnson, Douglas A. Schuyler. Blind Co-Channel Source Separation in Sparse Interferometric Arrays [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3704

Pages