Sorry, you need to enable JavaScript to visit this website.

This work proposes a novel and scalable reinforcement learning approach for routing in ad-hoc wireless networks. In most previous reinforcement learning based routing methods, the links in the network are assumed to be fixed, and a different agent is trained for

Categories:
2 Views

Online prediction for streaming time series data has practical use for many real-world applications where downstream decisions depend on accurate forecasts for the future. Deployment in dynamic environments requires models to adapt quickly to changing data distributions without overfitting. We propose POLA (Predicting Online by Learning rate Adaptation) to automatically regulate the learning rate of recurrent neural network models to adapt to changing time series patterns across time.

Categories:
4 Views

Smart grid systems (SGSs), and in particular power systems, play a vital role in today's urban life. The security of these grids is now threatened by adversaries that use false data injection (FDI) to produce a breach of availability, integrity, or confidential principles of the system. We propose a novel structure for the multi-generator generative adversarial network (GAN) to address the challenges of detecting adversarial attacks. We modify the GAN objective function and the training procedure for the malicious anomaly detection task.

Categories:
6 Views

Deep reinforcement learning (DRL) is able to learn control policies for many complicated tasks, but it’s power has not been unleashed to handle multi-agent circumstances. Independent learning, where each agent treats others as part of the environment and learns its own policy without considering others’ policies is a simple way to apply DRL to multi-agent tasks. However, since agents’ policies change as learning proceeds, from the perspective of each agent, the environment is non-stationary, which makes conventional DRL methods inefficient.

Categories:
43 Views

Weakly supervised learning algorithms are critical for scaling audio event detection to several hundreds of sound categories. Such learning models should not only disambiguate sound events efficiently with minimal class-specific annotation but also be robust to label noise, which is more apparent with weak labels instead of strong annotations. In this work, we propose a new framework for designing learning models with weak supervision by bridging ideas from sequential learning and knowledge distillation.

Categories:
5 Views

Pages